Evaluating What’s Been Learned
Cross-Validation

- Foundation is a simple idea – "holdout" – holds out a certain amount for testing and uses rest for training
- Separation should NOT be "convenience",
 - Should at least be random
 - Better – "stratified" random – division preserves relative proportion of classes in both training and test data
- 10-fold cross validation has become standard
- This is improved if the folds are chosen in a "stratified" random way
For Small Datasets

• Leave One Out
• Bootstrapping
Leave One Out

• Train on all but one instance, test on that one (pct correct always equals 100% or 0%)
• Repeat until have tested on all instances, average results
• Really equivalent to N-fold cross validation where N = number of instances available
• Plusses:
 – Always trains on maximum possible training data (without cheating)
 – No stratification, no random sampling necessary
• Minuses
 – Guarantees a non-stratified sample – the correct class will always be at least a little bit under-represented in the training data
 – Statistical tests are not appropriate
Bootstrapping

- Sampling done *with replacement* to form a training dataset
- Particular approach – 0.632 bootstrap
 - Dataset of n instances is sampled n times
 - Some instances will be included multiple times
 - Those not picked will be used as test data
 - On large enough dataset, .632 of the data instances will end up in the training dataset, rest will be in test

- This is a bit of a pessimistic estimate of performance, since only using 63% of data for training (vs 90% in 10-fold cross validation)
- This procedure can be repeated any number of times, allowing statistical tests
Counting the Cost

- Some mistakes are more costly to make than others
- Giving a loan to a defaulter is more costly than denying somebody who would be a good customer
- Sending mail solicitation to somebody who won’t buy is less costly than missing somebody who would buy (opportunity cost)
- Looking at a confusion matrix, each position could have an associated cost (or benefit from correct positions)
Information Retrieval (IR) Measures

• E.g., Given a WWW search, a search engine produces a list of hits supposedly relevant

• Which is better?
 – Retrieving 100, of which 40 are actually relevant
 – Retrieving 400, of which 80 are actually relevant
 – Really depends on the costs
Information Retrieval (IR) Measures

- IR community has developed 3 measures:
 - Recall = number of documents retrieved that are relevant / total number of documents that are relevant
 - Precision = number of documents retrieved that are relevant / total number of documents that are retrieved
 - F-measure = $2 \times \text{recall} \times \text{precision} / \text{recall} + \text{precision}$
Confusion Matrix

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>No. of obj</th>
<th>Accuracy</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter</td>
<td>Promo.</td>
<td>152.3</td>
<td>0.993</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Passive</td>
<td>0.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detractor</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MISSING</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Passive</td>
<td>Promo.</td>
<td>1.0</td>
<td>0.868</td>
<td>0.474</td>
</tr>
<tr>
<td></td>
<td>Passive</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detractor</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MISSING</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detractor</td>
<td>Promo.</td>
<td>0.7</td>
<td>0.849</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>Passive</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detractor</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MISSING</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSING</td>
<td>Promo.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Passive</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detractor</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MISSING</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

True positive rate: 0.99, 0.92, 0.98, 0

Total number of tested objects: 199
Total accuracy: 0.983
Total coverage: 0.836