
Towards In-Band Telemetry for Self Driving
Wireless Networks

Prabhu Janakaraj⇤, Pinyarash Pinyoanuntapong⇤, Pu Wang, Minwoo Lee
Department of Computer Science

University of North Carolina Charlotte
Charlotte, USA

{pjanakar, ppinyoan, pu.wang, minwoo.lee}@uncc.edu

Abstract—Self-driving network is an emerging network au-
tomation design principle for building next generation au-
tonomous networked systems based on machine learning algo-
rithms trained on real-time experiences, i.e., network state mea-
surements. However, existing network measurement techniques
are designed on centralized architecture leading to considerable
control overheads in wireless networks. In this work, we designed
and implemented a distributed In-band network telemetry system
(S-INT) and Wireless Network Operating System (WINOS) for
self-driving wireless networks. On one hand, our proposed S-INT
system significantly reduces network measurement overhead by
embedding telemetry into flowing data traffic with a specialized
packet header. WINOS system, on the other hand, seamlessly
integrates programmable measurement, i.e., the proposed S-
INT framework, with the programmable network control, while
providing rich APIs to facilitate fast implementation of machine
learning algorithms for intelligent and distributed network con-
trol. To show the effectiveness of our proposed system design, we
implemented a multi-agent reinforcement routing as a traffic en-
gineering application to optimize end-to-end delay performance.
To the best of our knowledge, our implementation is the first
one in the literature that enables multi-agent reinforcement
learning algorithm to run on an actual physical wireless multi-
hop network.

I. INTRODUCTION

Why Self-driving Wireless Networks? Software Defined
Networking (SDN) [1] brought more flexible network man-
agement functionality through a separation of network control
and data planes. A global view of the network infrastructure
can be obtained by the network control plane through a
dedicated channel, hence enabling optimal resource allocation
and traffic routing. SDN has been widely studied for wired
networking environments like campus, data center, and wide
area networks. Recent research works have explored SDN
application in wireless networks such as campus WiFi, sensor
networks, and cellular backbones [2], [3], [4]. However, only
few works have considered wireless multi-hop networks [5],
[6]. Wireless multi-hop networks, consisting of a mesh of
interconnected wireless routers, have been widely exploited
to build cost-efficient communication backbones, including
wireless community mesh networks [7], [8], [9], high-speed
urban networks (e.g., Facebook Terragraph network [10] and
London small cell mesh network [11]), global wireless Internet

This work is supported by NSF 1763182
* These authors contributed equally to this work

infrastructures(e.g., Google Loon balloon network [12]), bat-
tlefield networks (e.g., rajant kinetic battlefield mesh networks
[13]), and public safety/disaster rescue networks [14].

The coupling of programmable control using SDN with
the inference capabilities of reinforcement learning promises
unprecedented opportunities to realize next-generation self-
driving wireless multi-hop networks, where network manage-
ment and control decisions can be made in real time and in an
automated fashion. Traditionally, network operators are driving
the networked systems, who have to continuously develop
and use scripts and tools to plan, troubleshoot, and optimize
their networks. As user demands and network complexity
grow dramatically, the traditional operator-driven networks
are becoming inefficient. As an ultimate and ambitious goal
for network management, self-driving networks, which draws
an analogy to self-driving cars, automatically make network
management and control decisions in real-time. The self-
driving network can take as input a high-level goal related
to performance or security (such as minimizing network
congestion) and jointly determine (1) the measurements that
the network should collect, (2) learning and inferences that the
network should perform, and (3) the actions that the network
should ultimately execute [15].

Challenges: As the enabling technology for self-driving net-
works, reinforcement learning (RL) algorithms are experience-
driven optimization solutions that can generate optimal control
decisions. In traditional wired SDN architecture, out-of-band
centralized network telemetry approach is generally exploited
to gather such experience because of the existence of a reliable
dedicated control channel between the control plane and data
plane. Network monitoring tools such as OpenFlow statistics,
SNMP [16], sFlow [17], and NetFlow [18] are utilized to
acquire key network telemetry data such as network topology,
link delay, port status, queue delay, and link congestion by
the control plane in network controller. By applying machine
learning algorithms on the centrally available data it is possible
to automate and optimize network.

However, due to the limited bandwidth and dynamic wire-
less conditions, wireless networks cannot be optimized in a
centralized manner. Firstly, due to constrained network band-
width and dynamic link conditions, employing a dedicated
control channel is expensive. Secondly, existing centralized
monitoring solutions are not capable of providing the real

766
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

experience of the packet in wireless network. This demands
the deployment of distributed reinforcement learning algo-
rithms [19], [20], which in turn requires distributed In-band
Network Telemetry (INT) systems. INT [21], originated from
The P4 Language Consortium (P4.org), is a solution that
enables collecting and reporting of network status, by the data
channel (plane), without utilization and intervention of the
control channel (plane). However, P4 INT requires additional
hardware support.

The contributions of this paper are summarized as follows.
• We have designed and implemented S-INT, which is the

first distributed in-band telemetry system proposed for
wireless multihop networks, where each router runs its
own telemetry module that is built on top of OpenFlow
datapath/processing pipeline. Our preliminary experimen-
tal validation in wireless mesh testbed show that our pro-
posed S-INT system is a cost-effective in-band network
telemetry solution, which is very essential for enabling
self-driving wireless networks

• We have developed a Wireless Network Operating Sys-
tem (WINOS), which is a distributed network controller
running on each router. WINOS seamlessly integrates
programmable measurement, i.e., the proposed S-INT
In-band telemetry framework, with the programmable
network control, while providing rich APIs to facilitate
fast implementation of machine learning algorithms for
intelligent and distributed network control.

• We have implemented a Multi-Agent Reinforcement
Routing application for Wireless Mesh Networks using
WINOS and S-INT. In particular, each router, acting as
an agent, learns the optimal local traffic engineering (TE)
policy in such a way that the collective TE policy of
all routers can achieve the significantly improved end-to-
end (E2E) TE performance in terms of delay, throughput,
and packet loss. To the best of our knowledge, our
implementation is the first one in the literature that
enables multi-agent reinforcement learning algorithm to
run on a physical wireless multi-hop network.

It is worth to note that this work aims to show that the
proposed S-INT and WINOS can enable fast prototyping and
evaluation of emerging RL algorithms for wireless multi-hop
networks in the field. We are not attempting to show that our
prototyped RL-based algorithms are the optimal solutions.

II. S-INT: DISTRIBUTED IN-BAND WIRELESS NETWORK
TELEMETRY

Self-driving networks are only feasible with accurate and
timely feedback from the network elements. Existing network
monitoring solutions increases network overhead dramatically
and can only provide delayed experience of the packet,
leading to deferred network control decisions. But, prompt
response to network conditions are very critical for self-driving
networks. In-band telemetry service can utilize data packets
traversing the network ports for network metric measure-
ment and transportation. However, existing in-band telemetry
solutions are proposed for wired networks and centralized

architectures [22], [23] [24], where in-band telemetry metadata
increases the packet size by a significant order. Wired networks
are capable of transporting fat packets of size 9000 bytes.
Wireless networks are cannot handle fat packets. First, fat
packets require additional wireless transmission time which
will reduce the overall network utilization. Second, wireless
networks can only have a maximum packet size of 2304 bytes.
Thus, implementing the in-band telemetry system in wireless
is challenging and every telemetry header can only have a
specific metric.

Taking into account the practicability, we have designed and
implemented S-INT, a distributed in-band telemetry system,
where each router runs its own telemetry module, which is
built on the top of OpenFlow datapath/processing pipeline.
The proposed in-band telemetry system is enabled by three
key components: new packet header called S-INT teleme-
try header, new packet matching actions: PUSH INTL and
POP INTL, and the telemetry processor.

S-INT telemetry header: Network devices determines the
encapsulation of the packet using a special field known as
EtherType. In order to implement our S-INT telemetry system,
first we defined the EtherType for the S-INT telemetry header
and then implemented the encapsulation structure of the packet
of size 16 bytes. Figure 1 shows the packet structure with
our proposed header. Our proposed header structure is defined
on the context of Ethernet frame, since OpenFlow bridge can
only interpret Ethernet frames. Network application developers
can utilize the fields within the header through our extended
OpenFlow actions to gather the interested metrics. They can
also specify sampling frequency, hop count, or even end-to-end
datapath’s as their constraints for measurement. In addition,
we propose a template-based telemetry system where each
telemetry template is unique and have their own measurement
objective such as delay, bandwidth, and hop counts. Telemetry
header consists of three fields for representing source datap-
ath ID (the telemetry sender/source), destination datapath ID
(the telemetry receiver/sink), and TLV field to specify which
telemetry template is used. Each packet can only carry a
single template due to the limitation of MTU size. However,
in scenarios requiring to obtain two or more types of telemetry
data we suggest to use alternate templates over a sequence of
packets.

Payload

L4 header - TCP / UDP

L3 header - IP

L2 – header - Ethernet

Telemetry

SRC DPID

DST DPID

TLV

Packet Header

Telemetry Header
Fields

Hop Delay Bandwidth

Hop
CountE2E Delay

Telemetry Templates

Packet Structure

Fig. 1. Packet structure with S-INT Telemetry Header and Telemetry Template

767
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

Packet Parser Header
Extractor

Flowtable
(MATCH, ACTION)

Telemetry
Processor

(PUSH INTL)

Datapath
Executor

Update flow
 statistics

Fig. 2. Telemetry-enabled OpenFlow Datapath/Processing Pipeline: PUSH
INTL performed by the telemetry sender

Packet Parser Header
Extractor

Flowtable - 1
(MATCH INTL Header)

Telemetry
Processor

(POP INTL)

Datapath
Executor

Update flow
 statistics

Flowtable - 2
(MATCH, ACTION)

Update telemetry
statistics

Fig. 3. Telemetry-enabled OpenFlow Datapath/Processing Pipeline: POP
INTL performed by the telemetry receiver

PUSH and POP Actions: OpenFlow protocol provides
functions to encapsulate and decapsulate packets with headers
such as MPLS, VLAN and so forth for data transport. We
leverage the same functions to add and remove telemetry
header to and from data packets. Figure 2 shows the data-
path processing chain for PUSH telemetry header ACTION.
At the sender’s datapath, flowtable lookup is performed to
identify the packet forwarding path based on MATCH and
ACTION selection. If the path traversed by the packet is of
interest for telemetry information, then the packet will have
an additional action PUSH INTL:template type. This action
appends the data packet with a new header and modifies the
packet EtherType to local experimental EtherType. The above
mentioned action is the last executed action by the datapath
executor, before sending out the packet. Flow statistics of the
respective flow is then updated by the datapath executor in
terms of cumulative packet count and volume in bytes.

Datapath processing pipeline for POP action follows the
sequence as in figure 3. Since local experimental EtherType is
used as the identifier to know if the received packet contains
telemetry header, at the receiver’s datapath, flowtable MATCH
is first performed to identify the EtherType. If it contains S-
INT header, then the next ACTION to be performed on the
packet is POP INTL and then the EtherType is changed to
IPv4 Packet. Packet is then handled in a normal dataplane
processing pipeline, where a second flowtable lookup is per-
formed for MATCH and ACTION. Datapath executor then
forwards the packet following the ACTION and updates the
flow statistics. Depending on the hop in which we implement
the POP INTL action, we can obtain 1-hop or End-to-End
telemetry data. If we are only looking for 1-hop telemetry
data, then we can even send the packets without any further
encapsulation. However, if we are looking for 1-hop away or
end-to-end telemetry data, then we need to encapsulate the
packet further with transport headers such as MPLS.

Telemetry processor: Telemetry processor is the core of
our S-INT framework. The PUSH INTL and POP INTL
actions determine the operations performed by telemetry pro-
cessor. If the action is PUSH INTL:template type, then the
telemetry processor appends the header with the fields for the

WB -1WB -1 WB-3WB-3

WB-2WB-2

STA - 1 STA - 3

STA - 2

Wireless Link

Text

Telemetry processor
delay=(rx_ts–tx_ts)
Telemetry processor
delay=(rx_ts–tx_ts)

tx_ts

rx_ts

Dataplane

Telemetry
Manager

Intelligent
Applications

OpenFlow
Manager

Control
Plane

OpenFlow

PUSH INTL
HDR (tx_ts)

POP INTL
HDR

Fig. 4. S-INT Overall Architecture. Packet leaving WB1 contains the
timestamped (tx ts) and WB2 telemetry processor computes different between
local timestamp (rx ts) and packet timestamp (tx ts) to get the delay

respective template type. If the received packet contains the
telemetry header, upon identifying the telemetry template from
the header simple arithmetic operations are performed with
the telemetry data to retrieve link delay, bandwidth, and other
network state information. After retrieving data, telemetry
processor updates the telemetry statistics with new data.

In Figure 4, we illustrate an example case for measuring
the link delay between two telemetry-enabled OpenFlow dat-
apath’s using our S-INT system. Consider host STA1 sends
a packet to the host STA2. With OpenFlow rule as show in
figure 5, WB1 adds telemetry header to the packet with the
template type as delay using the PUSH INTL action. Delay
template appends timestamp (tx ts) to telemetry header before
sending our the packet. Once the packet is received by WB2
and telemetry header is removed with the POP INTL action
with template type as delay. After retrieving the timestamp
from the removed header, difference between current times-
tamp (rx ts) on WB2 and packet header timestamp (tx ts) is
computed to get the delay experienced by the packet.

In order to realize the above mentioned illustration we
should also extend the below listed datapath modules:

Packet Parser: Packet parser typically consists of the struc-
ture of every packet that exits in today’s network including
IPv4, IPv6, TCP, UDP, and ICMP. Once a packet is received
on the switch port, the conformity of the packet is verified
by checking its data structure. Non-conformed packets are
automatically dropped. We extended the data structure of the
packet library to include our custom header structure as in
figure 1 to pass the verification stage.

Header Extractor: The header extractor identifies the fields
within the received packet based on the packet type determined
by packet parser. Every packet type has strictly defined header
attributes with own data type. The header extractor scrutinizes
the received packet and identifies the values for the specific
header type attributes. For instance, if it receives a Ethernet
packet then header extractor will identify the source and

768
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

MATCH ACTION STATS

in_port = 1
apply: push_intl, delay,

out_port = 2 tx_pkts, rx_pkts, intl_delay

in_port = 2 tx_pkts, rx_pkts, intl_delayapply: pop_intl, delay,
out_port = 1

OpenFlow rule
on

WB2

WB1

Fig. 5. S-INT: OpenFlow rules in Flowtable for delay estimation between
Telemetry enabled OpenFlow datapath WB1 and WB2

destination Ethernet addresses. We extended this module with
our new header structure and data type as shown in figure. 1.

Flowtable: Packet forwarding in SDN is handled based on
the MATCH and ACTION instructions. The flowtable is a
multidimensional row and column with depth of upto 1024.
Typical structure of the flowtable is grouped into MATCH,
ACTION and STATISTICS columns. MATCH columns will
generally comprise of fields in L2, L3 and L4 packet headers
in addition to datapath port numbers. ACTION column will
contain the instruction of how to handle the matched packet.
Typically, it can have a simple instruction such as forward
the packet to a specified port, modify a packet, encapsulate or
decapsulate a packet. STATISTICS columns are built with a
handful of counters that identify statistics such as count and
size of packets processed by the specific rule. To implement
our telemetry templates, we extended the STATISTICS coun-
ters with additional fields to include telemetry metrics such as
delay, bandwidth, and hop count. Figure 5 shows an example
of flowtable structure with telemetry flows. Based on the
chosen telemetry template, the resulting statistics fields will be
varying. As a result, our PUSH INTL and POP INTL actions
should be independent from the normal datapath processing
action.

III. WIRELESS NETWORK OPERATING SYSTEM (WINOS)
WITH IN-BAND TELEMETRY

Telemetry-Enabled
OpenFlow Datapath

(Ofsoftswitch13)

Virtual Ethernet
Port - 1

Virtual Ethernet
Port - 2

MAC / PHY
(mac80211)

ath10k

MAC / PHY
(mac80211)

ath10k

Power,
Channel,

Contention
Window

Power,
Channel,

Contention
Window

802.11 a/b/n/
ac/ad

Transceiver

802.11 a/b/n/
ac/ad

Transceiver

User Space

LINUX
OS

Telemetry-Enabled
OpenFlow Datapath

(Ofsoftswitch13)

Virtual Ethernet
Port - 1

Virtual Ethernet
Port - 2

MAC / PHY
(mac80211)

ath10k

MAC / PHY
(mac80211)

ath10k

Power,
Channel,

Contention
Window

802.11 a/b/n/
ac/ad

Transceiver

802.11 a/b/n/
ac/ad

Transceiver

User Space

LINUX
OS

Radio Interface
Manager
(Netlink)

Network State &
Telemetry
Database

(Mango DB)

OpenFlow
Manager

Telemetry
Manager

Link Discovery
(LLDP +

Mac802.11)

SouthBound API – OpenFlow and Netlink

NorthBound - REST API

AI – Inspired
Routing

Self-Driving
Traffic

Engineering

Network State
Inference

NorthBound - REST API

AI – Inspired
Routing

Self-Driving
Traffic

Engineering

Network State
Inference

Radio Interface
Manager
(Netlink)

Network State &
Telemetry
Database

(Mango DB)

OpenFlow
Manager

Telemetry
Manager

Link Discovery
(LLDP +

Mac802.11)

SouthBound API – OpenFlow and Netlink

NorthBound - REST API

AI – Inspired
Routing

Self-Driving
Traffic

Engineering

Network State
Inference

Fig. 6. WINOS with telemetry-enabled OpenFlow datapath

To implement S-INT telemetry system we need extensive
modification on OpenFlow datapath and OpenFlow manager.
In particular, OpenFlow datapath should be able to interpret
telemetry data and OpenFlow manager should be able to
collect and serve the data to other applications. As a result, we
propose the distributed Wireless Network Operating System
(WINOS), which runs on each wireless router and provides
extended modules to realize the vision of self driving wireless
networks. As shown in Figure 6, WINOS is designed to
support the fast prototyping of AI algorithms for intelligent
networking. It is built on the top of OpenFlow Manager based
on RYU controller [25], telemetry-enabled datapath based
on Ofsoftswitch13 [26] software switch, telemetry manager,
network state and telemetry database based on MongoDB [27],
and radio interface manager based on NetLink library.

OpenFlow Manager: SDN strongly relies on OpenFlow
due to its simplicity of MATCH, ACTION and STATISTICS
criterion. Although adopting the same principle for self-driving
networks seems dauntingly useful, it should be capable to
convey the experience of the network packets as results of
followed ACTION. Hence, we propose to extend the Open-
Flow STATISTICS module to incorporate telemetry data for
conveying packet experience. OpenFlow1.3 protocol defines
the structure of messages for representing the datapath ele-
ments such as ports, flowtable, packet, and so forth. OpenFlow
enables switch interface to communicate with the controller
using OpenFlow protocol. This imposes a requirement that
any new functionality implemented on the datapath certainly
requires modifying the OpenFlow protocol itself. In our case,
to share the telemetry data from dataplane to the control plane,
we have extended OpenFlow flow statistics message structure
with our telemetry template fields such as SRC DPID, DST
DPID and TLV fields.

Telemetry-enabled OpenFlow Datapath: To implement
our S-INT telemetry framework, we modified the key modules
of Ofsoftswitch13 according to the details in section II.
Ofsoftswitch13 is a software switch that is designed based
on the specifications of OpenFlow protocol version 1.3. This
software switch runs entirely on userspace, thus making it the
most suitable for prototyping new packet handling routines.
The userspace switching leverages Linux TAP/TUN interface
for integration with the operating system network stack. Of-
softswitch13 supports attaching both virtual and physical ports
to its datapath bridge. Packets received on these ports are
processed through four key modules including packet parser,
header extractor, flow table lookup, telemetry processor, and
datapath executor as shown in Figure 2 and 3.

Telemetry Manager: Telemetry data access control and
gathering process is handled by the telemetry manager. Any
network application, which requires such telemetry data, sends
the request to telemetry manager. After receiving the request, it
checks Telemetry database and OpenFlow manager to identify
if such data is already being gathered. If the application request
type is new, then telemetry manager will identify the flows of
interest and instructs the OpenFlow manager to disseminate
OpenFlow rules to the corresponding datapath.

769
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

Network State and Telemetry database: Our network
state database provides a RPC based interfaces for data access
within kernel layer and also provides access interface via
Northbound API’s for network applications, such as reinforce-
ment learning based routing algorithm. By having a database
within the network controller, it is possible to enable stateful
network applications such as firewall and also we can develop
applications for data intensive traffic engineering applications.
In our work, we extensively use mongoDB to store and serve
the telemetry data. In addition, our state base also stores the
network state such as link condition and topology formation
in a time sequence manner.

Link Discovery Module and Radio Interface Manager:
Network orchestration and control in SDN network highly
rely on the gathered network topology information. In a fully
closed/connected network such as wired networks, network
topology is discovered using extended link layer discovery
protocol (LLDP However, such network discovery mechanism
fails in wireless networks. The primary reason for such failure
is related to how the links and nodes are perceived in Open-
Flow. In particular, direct adoption of the existing link discov-
ery mechanism in wireless multi-hop networks will make all
wireless nodes appear as if they are all 1-hop away from each
other and they connect to a single port on the data plane. This
complicates how we forward packets to the wireless nodes
that are several hops away. Wireless channel is a broadcast
medium and nodes accept packets that are transmitted with
their wireless interface MAC address. Hence, we propose to
extend the link discovery mechanism to be integrated with
MAC80211 SoftMAC module[28]. MAC80211 itself contains
discovery schemes that tells which nodes are connected to
each other along with the link status. This combination enables
network control and visibility in wireless multi-hop networks.
In addition, with our integrated system we can control inherent
wireless network properties such as link interference, transmit
power, channel selection, topology formation and transmit
contention window size.

IV. MULTI-AGENT REINFORCEMENT ROUTING FOR
SELF-DRIVING WIRELESS MESH NETWORKS

As one of the most important network management meth-
ods, traffic engineering (TE) aims to dynamically analyze real-
time network traffic and perform optimal routing to meet
the quality of service (QoS) requirements for the traffic
flows. Optimizing the E2E TE metrics such as E2E delay
and throughput is very challenging in wireless multi-hop
networks due to the profound dynamics in traffic flow patterns,
wireless link status, working conditions of wireless routers,
and time-varying network topology. Recent advances in rein-
forcement learning (RL) have provided promising technologies
for enabling experience-based model-free TE[19], [29], [20].
However, existing RL routing applications are based on non-
realistic simulator or network emulator. In this section, we
demonstrate a prototype of the self-driving wireless network
by implementing a learning-based routing application on a
WINOS-empowered wireless mesh network testbed. In par-

ticular, this routing application is based on our multi-agent
reinforcement learning-based TE framework proposed in [20].
A. MDP for delay-optimal Traffic Engineering

The distributed traffic engineering (TE) can be formulated
as multi-agent extension of Markov decision process (MA-
MDP) for N routers [20], which is defined as a tuple of
hS,O1:N ,A1:N ,P, r1:N i. In this MA-MDP formulation, the
environmental states S consist of the network topology, the
source and destination (i.e., source and destination IP ad-
dresses) of each packet in each router, the number of packets
(queue size) of each router, and the status of links of each
router. Oi defines the local observation of each router i. It
contains the network state information, which is available at
each router i. Ai is the set of actions that can be performed
by router i. For our TE application, Ai contains the IDs of
the next-hop neighbors of router i that router i can use as the
next-hop forwarding node. P is the network state transition
probabilities, which are generally unknown. ri is the reward
function of each router i, which is the (negative) 1-hop delay
from router i to its neighbor. For each packet that enters
the router i, the router needs to determine the forwarding
action (a 2 Ai) based on its local observation o 2 Oi of the
network status. After the forwarding action is performed or
the packet is sent out, the router will receive a reward ri (i.e.,
the (negative) delay) when the packet arrives at its next-hop
router i + 1, which has its own local observation o

0
2 Oi+1.

The return Gi =
PT

i=1 ri is the accumulated reward (i.e.,
negative E2E delay) induced by forwarding a packet from
its ingress router to its egress router. Each router selects
forwarding actions based on a local policy ⇡i, which tells how
the router chooses its action based on the observation. The
policy can be stochastic by choosing an action according to
certain probability or deterministic by choosing a fixed action.
Our objective is to find the optimal policy ⇡i for each router
so that the average E2E delay of all packets is minimized, i.e.,
the expected return J(⇡) = E[Gi|⇡] = E[

PT
i=1 ri|⇡] of the

joint policy ⇡ = ⇡1, ...,⇡N is maximized.

B. Multi-agent Off-policy Softmax RL Algorithm
To solve the above MA-MDP problem, we followed the

multi-agent actor-critic (MA-AC) architecture [20]. In this
case, each router has its own actor and critic running locally.
The local critic uses exponential moving average to estimate
the action-value functions q

⇡i
i (s, a), which criticize the action

selections. Using critic’s inputs, the actor improves the target
policy towards the direction that can maximize the expected
return,

Local Critic for Policy Evaluation: The performance of
the policy ⇡ is measured by the action-value q

⇡
i (s, a), which

is a E2E TE metric. The action-value q
⇡
i (s, a) of router i can

be written as the sum of 1-hop reward of router i and the
action-value of the next-hop router i+ 1, i.e.,

q
⇡i
i (s, a) = E

⇥
ri + q

⇡i+1

i+1 (s0, a0)
⇤
. (1)

By applying exponential weighted average, the estimate of
q
⇡i
i (s, a), denoted by Q

⇡i
i (s, a), can be updated based on

770
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

1-hop experience tuples (s, a, ri, s0, a0) and the estimate of
q
⇡i+1

i+1 (s0, a0) of next-hop router, denoted by Q
⇡i+1

i+1 (s0, a0), i.e.,

Q
⇡i
i (s, a) Q

⇡i
i (s, a)+↵[ri+Q

⇡i+1

i+1 (s0, a0)�Q⇡i
i (s, a)] (2)

where ↵ 2 (0, 1] is the learning rate.
Local Actor for Policy Improvement: Based on the

estimated action-value, i.e., Q value, the local actor aims
to improve the local policy towards the direction that can
maximize the expected return J(⇡). In this paper, we adopt the
off-policy softmax algorithm as the local routing policy. In this
case, the target policy the router aims to learn and improve is
the greedy policy, i.e., selecting the action with the maximum
estimated action-value. The behavior policy, which generates
the actual actions for the learning agent, i.e., router, is softmax
policy, where each action a is selected with a probability P (a)
based on the exponential Boltzmann distribution.

P (a) =
exp(Q⇡i

i (s, a)/⌧)P
b2Ai

exp(Q⇡i
i (s, b)/⌧)

Actor Neighbor
Q - Estimator

Local
Q - Estimator

Critic

Openflow
Manager

Network State /
Telemetry

(MangoDB)

NorthBound - REST API

Telemetry
Manager

Fig. 7. multi-agent actor-critic reinforcement routing can be quickly proto-
typed as an application running on the WINOS of each router shown in Fig.
6

C. Learning Algorithm Implementation as an APP of WiNOS
The implementation of off-policy softmax learning algo-

rithm is based on two northbound APIs provided by WINOS
as shown in Fig. 7. The first API provided by network state
database will provide the Q estimation for the local critic.
Based on the Q value, the actor improves the target greedy
policy, while generating the actual actions to be performed by
router based on softmax policy. The actual action, i.e., next-
hop router selection, is then forwarded to the OpenFlow man-
ager based on another northbound API, Finally, the OpenFlow
manager will translate the human-readable actual actions to the
underlying OpenFlow instructions.

Fig. 8. Backward Neighbor Q estimation

Backward Neighbor Q Estimation: The key challenge to
implement reinforcement routing algorithms is how to estimate
the Q value without inducing so much control overhead. In
particular, estimating Q value relies on the measurement of
per-hop per-packet delay as shown in eq. 2. Directly requesting
the per-packet delay information from the neighboring router
could introduce significant overhead to the bandwidth-limited
wireless channel. Therefore, it is necessary to redesign the way
of exchanging information among neighbor. As illustrated in
Fig 8, we propose the backward neighbor Q estimation for
each router i, which aims to estimate the action-value of the
(backward) neighbors whom the router i receives data from.
The local Q estimation of router i is directly coming from
its forward neighbors. The motivation of such design is based
on the fact that the action-value Q1 of predecessor router 1
is estimated based on the reward r1 (i.e., per-packet delay)
and the action-value Q2 of current router 2. Both r1 and Q2

are immediately available at current router 2, instead of the
predecessor router 1. Therefore, it is more cost-effective to let
current router estimate the action-value of its backward router.
Such scheme allows the action-value to be updated at the line
speed, i.e., the speed at which packets come in the router and
also reduce the overhead delay in control channel.

Implementation details: In our implementation, the local
agent periodically observes the flow table from local controller
REST API, which is provided by RYU rest ofctl application.
According to Fig. 8, when a packet from Router 1 is sent to
Router 2, if there is a MATCH entry for the packet header
fields, the forwarding rule at Router 2 is executed, which
is defined by ACTION fields. In particular, MATCH fields
contain [source destination mac, destination mac address, des-
tination IP], where the destination IP of the packet is used as
the local state/observation at each router. Based on such local
state, the ACTION set_field (i.e., source destination mac,
destination mac address and output port) is modified according
to the softmax behavior policy, which needs the the local Q
estimation that can be obtained from the forward neighbor
router of the router 2. To stabilize the learning process, the
ACTION fields are only updated for every N packets. At the
same time, whenever router 2 receives a packet from the router
1, router 2 will keep updating the Q value of router 1 according
to Q

⇡1
1 (s, a) Q

⇡1
1 (s, a) + ↵[r + Q

⇡2
2 (s0, a0) � Q

⇡1
1 (s, a)],

where the reward r is the negative one-hop delay from router
1 to router 2. r is obtained by the proposed S-INT framework.
Finally, router 2 will send the updated Q1 back to Router 1
periodically via POST request. After Router 1 receives the Q1

from router 2, it uses the new Q1 as its local Q estimator.

V. EXPERIMENTAL EVALUATIONS

Testbed Setup: Our experimental physical testbed consisted
of 5 Nvidia Jetson Xavier nodes with Compex WLE900VX
wireless interface card. We deployed our WINOS system on
top of Ubuntu 18.04 Linux operating system running on each
Nvidia Jetson node. Each wireless router was configured to
operate on fixed 5Ghz Channel 36 and 40Mhz channel width
in 802.11ac operating mode. We installed 5 wireless routers at

771
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

4
3
5
G

4
3
5
F

4
3
5
E

4
3
5
D

4
3
5
C

4
3
5
B

4
3
5
A

4
2
3
C

4
2
3
B

4
2
3
A

4
3
0
E

4
3
0
D

4
3
0
C

4
3
0
B

4
3
0
A

4
1
0
H

4
1
0
G

4
1
0
F

4
1
0
E

4
1
0
D

4
1
0
C

4
1
0
B

4
1
0
A

4
0
9

4
0
3
E

4
0
3
D

4
0
3
C

4
0
3
B

4
0
3
A

4
0
2
A
	/	4

0
2

4
0
1

4
3
7

4
1
1

4
3
6

4
2
5

4
2
4

4
2
2
C

4
3
2
A
	/	4

3
2
B

4
0
5

4
3
1

4
3
2
A
	/	4

3
2
B

S
T
R
1

4
0
9

4
0
9

R1

R2

R3

R4

R5

Client
Server

(a) (b)

Fig. 9. (a) Testbed deployed in a campus building (b) Wireless Router built
on the top of Nvidia Jetson Xavier running S-INT and WINOS

various locations covering our lab floor area and 2 client hosts
were connected at locations R1 and R3 as show in Figure 9.
After the deployment, we manually inspected the topologies
formed at every router and noticed that there were two possible
paths from the client to the server. First, the upper bound path
goes through R3 ! R2 ! R1 (2 hops) and lower bound path
from R3 ! R 4 ! R5 ! R1 (3 hops). A client sends a
UDP traffic flow to the server with the varying traffic intensity
of 1.0, 1.15 and 1.30 Mbps respectively following a Poisson
distributed packet inter-departure time per second. The traffic
flow lasts for 15 minutes. Each data traffic intensity keeps
unchanged for 5 minutes and then the intensity is increased to
next level. We use the average end-to-end throughput,the av-
erage end-to-end packet delay, and average end-to-end packet
loss as the performance metrics. Since the wireless network
conditions are dynamically changing overtime, we average the
experiment results of 10 runs that are performed at different
times (e.g., morning and night) of two consecutive days.

Learning-algorithms in the fields: The objective of this ex-
periment is to show that the proposed S-INT and WINOS en-
able quick prototyping of the emerging reinforcement learning-
based (RL) algorithms for wireless multihop networks in the
field. We are not attempting to show that our implemented
RL-based routing algorithms are the best solutions. Therefore,
in this study, the naive shortest path (in terms of hop) was
selected as a baseline to compare to off-policy RL algorithm
with softmax action selection. As mentioned in [20], softmax
action-selection, in general, helps the router to explore and
exploit multiple routing paths to balance the traffic in high
network loads and to reduce average packet delivery time.
Thus, we selected softmax policy as a behavior policy for the
agent and learning rate is set 0.1. Figure 10 shows the average
delay, throughput, and packet loss rate for every 1 minute and
the top x-axis shows the data traffic load increasing every 5
minutes. The dynamic network environment comes from the
nature of the wireless medium (link delay) and increasing
traffic load (queuing delay). The overall performances show
the efficient routing policies of the learning-based TE since
it is able to adapt to the non-stationary network environment
and learn the optimal path dynamically. In term of the end-to-
end delay, it can be seen that the off-policy softmax remains
the same packet delivery delay as low as 0.5 second for the

whole experiment. The shortest path routing performs poorly
i.e., delay increases as traffic load increases. In Figure 10(b),
the throughput of off-policy softmax surges up when higher
data traffic (1.15 and 1.30 Mbps) is injected into the network.
However, the throughput of shortest path increases only around
100 Kbps due to congestion, and the packet losses of shortest
path routing continuously rise up to around 70 packets per
second as shown in Figure 10(c).

Stability Analysis: The performance gap we observed in
the previous section becomes even more evident when we
evaluate the stability analysis over 10 runs. Figure 11 illus-
trates the mean and variance of the delay and throughput for
each network load condition. Although the wireless network
environment is heavily dynamic, the variances of delay and
throughput of learning-based TE maintain low around 0.9 sec
in term of delay and 100 Kbits in term of throughput. For
example, even with highest network traffic (1.3 Mbits) injected
into network, the average and variance of the end-to-end delay
remains relatively small as 0.48 ±0.81 for learning-based
TE, while the shortest path routing experiences high average
delay along with high delay variance (i.e., jitter). Similar
phenomenon is also observed for the end-to-end throughput. In
sum, as the traffic load grows, the learning-based TE algorithm
leads to superior networking performance.

Overhead Analysis: The key feature of S-INT is to reduce
the control overhead when the learning algorithms need to
collect experiences for training. To observe the effectiveness
of S-INT, we compare it to the probe-based measurement
method, which sends extra probe packets to collect the network
metrics such as link delay. The ICMP data packet is used to
carry timestamp. Each router sends a timestamp probe packet
after each data packet is sent out. In this way, the probe-
based approach can achieve the same per-packet telemetry as
S-INT. We evaluate the network delay and throughput perfor-
mance under S-INT and probe-based telemetry respectively in
Figure 12. X-axis represents the varying traffic loads, and y-
axis shows the average of end-to-end delay and throughput
for 5 minutes. The figure clearly shows that S-INT approach
significantly reduces the control overhead and leads to much
higher throughput and lower delay. This is because even with
the small size (56 bytes) of probe packets, sending a probe
packet out for every out-going data packet is very costly.

VI. CONCLUSION

In this paper, we proposed a distributed In-band telemetry
system (S-INT) and a wireless network operating system
(WINOS) for self-driving wireless networks. Our proposed
system provides two key benefits (1) Programmable mea-
surement using S-INT, resulting in low-overhead telemetry
system and (2) Programmable wireless network control from
WINOS for quick and easy implementation of AI-enabled
distributed traffic engineering solutions such as Multi-Agent
reinforcement routing. We implemented a traffic engineering
application based on Multi-Agent Reinforcement routing on
a physical wireless mesh testbed, using S-INT and WINOS
systems. Our results show promising network performance

772
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) E2E Delay (b) Throughput (c) Packet Loss

Fig. 10. Average of 10 runs under high network increasing load conditions, we measured the network metrics for every 1 minute

(a) E2E Delay (b) Throughputs

Fig. 11. Stability Analysis of off-policy softmax routing and shortest path
routing

(a) E2E Delay (b) Throughput

Fig. 12. Performance comparison between probes and S-INT (single run)

in terms of delay, packet loss and throughput. We strongly
believe, our proposed distributed WINOS and S-INT systems
will open more research opportunities to realize Self-Driving
wireless networks.

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30–32, 2009.

[2] I. F. Akyildiz, P. Wang, and S.-C. Lin, “Softair: A software defined
networking architecture for 5g wireless systems,” Computer Networks,
vol. 85, pp. 1–18, 2015.

[3] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in 2012 European Workshop on Software Defined Network-
ing. IEEE, 2012, pp. 7–12.

[4] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-
defined mobile networks,” IEEE Communications magazine, vol. 51,
no. 7, pp. 44–53, 2013.

[5] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh
software defined networks (wmsdn),” in 2013 IEEE 9th international
conference on wireless and mobile computing, networking and commu-
nications (WiMob). IEEE, 2013, pp. 89–95.

[6] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-defined wireless
mesh networks: architecture and traffic orchestration,” IEEE network,
vol. 29, no. 4, pp. 24–30, 2015.

[7] P. Frangoudis, G. Polyzos, and V. Kemerlis, “Wireless community net-
works: an alternative approach for nomadic broadband network access,”
IEEE Communications Magazine, vol. 49, no. 5, pp. 206 – 213, 2011.

[8] “New york city (nyc) mesh network,” 2012, available:
https://www.nycmesh.net/.

[9] “Germany freifunk wireless community network,” 2003, available:
https://en.wikipedia.org/wiki/Freifunk.

[10] “Facebook terragraph network,” 2016, available: https://terragraph.com/.
[11] “London urban smallcell mesh network,” 2017, available:

https://www.thinksmallcell.com/Urban/city-of-london-deploy-urban-
small-cell-mesh-network.html.

[12] “Google balloon powered global wireless internet,” 2011, available:
https://loon.com/technology/.

[13] “Rajant kinetic mesh networks for battlefield communication,” 2018,
available: https://rajant.com/markets/federal-military-civilian/.

[14] M. Portmann and A. Pirzada, “Wireless mesh networks for public safety
and crisis management applications,” IEEE Internet Computing, vol. 12,
no. 1, pp. 18–25, 2008.

[15] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv:1710.11583, 2017.

[16] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple network man-
agement protocol,” STD 15, RFC 1157, SNMP Research, Performance
Systems International, MIT . . . , Tech. Rep., 1990.

[17] S. U. Rehman, W.-C. Song, and M. Kang, “Network-wide traffic
visibility in of@ tein sdn testbed using sflow,” in The 16th Asia-Pacific
Network Operations and Management Symposium. IEEE, 2014, pp.
1–6.

[18] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 4, pp. 245–256, 2004.

[19] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Advances in neural
information processing systems, 1994, pp. 671–678.

[20] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engi-
neering through multi-agent reinforcement learning,” in IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2019.

[21] J. Hyun and J. W.-K. Hong, “Knowledge-defined networking using in-
band network telemetry,” in 2017 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS). IEEE, 2017, pp. 54–57.

[22] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

[23] N. Van Tu, J. Hyun, and J. W.-K. Hong, “Towards onos-based sdn
monitoring using in-band network telemetry,” in 2017 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE,
2017, pp. 76–81.

[24] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. Chen, and
G. Mirsky, “Am-pm: Efficient network telemetry using alternate mark-
ing,” IEEE Network, accepted, 2019.

[25] Ryu: Sdn controller. [Online]. Available: https://osrg.github.io/ryu/
[26] “Ofsoftswitch13,” available: https://github.com/CPqD/ofsoftswitch13.
[27] “Mangodb,” available: https://www.mongodb.com/.
[28] “Softmac,” available: http://bit.ly/2Rq6vwG.
[29] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. Liu, and D. Yang,

“Experience-driven networking: a deep reinforcement learning based
approach,” in Proceedings of IEEE INFOCOM, 2018.

773
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 30,2021 at 08:08:45 UTC from IEEE Xplore. Restrictions apply.

