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Abstract— Traffic engineering is one of the most important
methods of optimizing network performance by designing opti-
mal forwarding and routing rules to meet the quality of service
(QoS) requirements for a large volume of traffic flows. End-
to-end (E2E) delay is one of the key TE metrics. Optimizing
E2E delay, however, is very challenging in large-scale multi-
hop networks due to the profound network uncertainties and
dynamics. This paper proposes a model-free TE framework
that adopts multi-agent reinforcement learning for distributed
control to minimize the E2E delay. In particular, distributed TE
is formulated as a multi-agent extension of Markov decision
process (MA-MDP). To solve this problem, a modular and
composable learning framework is proposed, which consists of
three interleaving modules including policy evaluation, policy
improvement, and policy execution. Each of component can
be implemented using different algorithms along with their
extensions. Simulation results show that the combination of
several extensions, such as double learning, expected policy
evaluation, and on-policy learning, can provide superior E2E
delay performance under high traffic load cases.

I. INTRODUCTION

Over the last few years data traffic has drastically increased
due to the changes in the way today’s society creates, shares,
and consumes information. Thus, the wired and wireless
network expansions are necessary to accommodate demand
growth and require the efficient and intelligent utilization of
limited network resources to optimize network performance.
Traffic engineering (TE) [1] is one of the most important
methods of optimizing network performance by dynamically
measuring and analyzing real-time network traffic, and de-
signing optimal forwarding and routing rules to meet the
quality of service (QoS) requirements for a large volume
of traffic flows. End-to-end (E2E) delay is one of the key
QoS metrics TE aims to optimize. Optimizing E2E delay,
however, is very challenging in large-scale wired networks
and wireless multi-hop networks due to the profound un-
certainties and dynamics in traffic flow patterns, working
conditions of routers, network topology, and wireless link
status.

The commercially-available TE solutions, such as OSPF,
IEEE 802.11s [2], and B.A.T.M.A.N., [3], are generally
variants of shortest path routing protocol. They are simple
and easy to implement. But, they cannot guarantee optimal
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E2E TE performance. To provide provably optimal TE
performance, there exists a large body of theoretical research
work on stochastic network utility maximization (NUM)
[4], [5], where multi-hop TE problem can be formulated as
constrained maximization problems of the utility function
under stochastic dynamics in user traffic and time-varying
wireless channels. However, they cannot be used to minimize
E2E delay because E2E delay cannot be explicitly and
mathematically related to the TE control parameters, such as
traffic splitting ratio over each output link, which, however,
have to be included in the utility function in the NUM
formulation.

Recent advances in reinforcement learning (RL) have
provided diverse solutions to complex problems such as
robotics [6], [7], cloud computing [8], [9], advertisement
[10], and finance [11]. Adoption of reinforcement learning
has been enabling experience-based model-free TE [12],
[13], [14], [15], which has several key advantages: (1) it
needs neither strong assumptions nor accurate modeling of
the network, thus allowing it to achieve robust and resilient
performance in complex networking systems with high-level
uncertainties and randomness, (2) it is designed to handle
non-stationarity, and thus it is able to automatically adapt to
the time-varying network dynamics, (3) it can deal with large
and sophisticated state/action spaces when it is combined
with the recent advances in linear and non-linear function
approximation (i.e. deep learning).

However, these TE solutions are mainly designed for
small-scale computer networks, where a centralized network
controller acts as a single agent to solve the TE problems
using deep reinforcement learning. The centralized TE is not
applicable in large-scale multi-hop networks. Moreover, the
computational complexity of the centralized control grows
exponentially as the scale of wired/wireless networks grows.
Thus, it is reasonable move to distributed TE to counter the
fast-changing dynamics of networks and real-time adaptation
to develop local TE policies when real-time traffic measure-
ments are only available locally.

So far, the research on distributed model-free TE mainly
focuses on applying Q-learning and its variants in a multi-
agent setting [16], [17], [18], [19], [20]. However, Q-learning
based TE has fundamental limitations. Q-learning is an off-
policy learning method, which is of greater variance and



converges slowly. This leads to a suboptimal TE performance
when there is not sufficient experience to learn from. Q-
learning is also an action-value based method, which can
only learn deterministic TE policy. This means that each
traffic flow can only take a single routing path to reach the
destination. There exist a variety of RL algorithms and their
extensions that can address the limitations of Q-learning in
theory and in the general sense. However, it is still unclear
(1) How these algorithms can be generalized to a multi-
agent setting to enable distributed TE? (2) What is the
actual performance of these algorithms when applied for
TE problems? (3) Which of the algorithm extensions are
complementary and can be combined to yield substantial
performance improvements?

To answer three questions above, the overall objective of
this paper is to develop a modular and composable multi-
agent learning system, which provides modules and module
extensions that can be selected and assembled in various
combinations to generate a specific multi-agent reinforce-
ment learning algorithm that can automate the E2E TE in
multi-hop computer networks. Towards this goal, (1) we for-
mulate distributed TE as a multi-agent extension of Markov
decision process (MA-MDP); (2) to solve this MA-MDP
problem, we propose a modular and composable learning
framework consisting of three interleaving modules, each of
which can be implemented using different algorithms along
with different algorithm extensions. These implementations
can be selected and assembled in various combinations to
generate a specific reinforcement learning algorithm; (3) we
propose a distributed multi-agent actor-critic-executor (MA-
ACE) architecture to simplify the interleaving operations
between framework modules, thus facilitating fast learn-
ing algorithm prototyping and instantiation; (4) we present
preliminary results through simulations in a discrete-time
network environment.

II. MULTIAGENT MARKOV DECISION PROCESSES
(MA-MDP) FOR TRAFFIC ENGINEERING

We formulate the traffic engineering problem as a multi-
agent extension of Markov decision process [21], [22],
[23], where a set N = (1, ...,N) of agents (i.e., routers)
interacts in an environment with an objective to learn the
award-maximizing behavior. An MA-MDP learns which
next-hop each router should send its packets to in order
to move the packets to their destinations with the opti-
mal end-to-end traffic engineering (E2E-TE) performance
metrics including E2E delay, E2E throughput, and hybrid
E2E TE metric that jointly considers delay and through-
put. An MA-MDP for N routers is defined by a tuple
< S ,O1, ...,ON ,A1, ...,AN ,P,r1, ...rN >, where

• S is a set of environment states, which include the net-
work topology, the source and destination (i.e., source
and destination IP addresses) of each packet in each
router, the number of packets (queue size) of each
router, and the status of links of each router, e.g., signal-
to-interference-plus-noise ratio (SINR).

• Oi, i = 1, ...,N is a set of observations for each router i,
which include local network states available at router
i. For example, the observation can be simply the
destination of the incoming packet.

• Ai, i = 1, ...,N is a set of actions for each router i,
which include the next-hop routers the current router
can forward the packets to.

• P : S ×A1× ...×AN×S 7→ [0,1] is the state transi-
tion probability function, which models the environment
dynamics. The environment dynamics are driven by the
unknown stochastic packet arrival processes of traffic
sources, and the packet departure processes that are
determined by the action and link status of each router.

• ri, i = 1, ...,N : Ai×S 7→ R is the reward function of
each router i, which is defined based on the E2E-TE
metrics we want to optimize. In this paper, we aim to
optimize E2E delay. Therefore, the reward ri = di is
defined as the (negative-signed) 1-hop delay di a packet
experiences when it is forwarded from current router i
to next-hop router i+ 1. di includes processing delay,
queueing delay, transmission delay, and propagation
delay.

When a packet enters a router i, the router obtains its local
observation o ∈Oi of the network states and takes an action
a ∈ Ai to determine where to send this packet to. As a
result, the router receives a reward ri (e.g., (negative) one-hop
delay) when the packet arrives at its next-hop router i+ 1,
which has its own local observation o′ ∈ Oi+1. Each router
selects actions based on a policy πi, which specifies how the
router chooses its action given the observation. The policy
can be stochastic πi(a|o) : Oi ×Ai 7→ [0,1], where given
current observation o ∈ Oi, the router sends a packet to the
next-hop router a ∈ Ai according to the probability πi(a|o)
with ∑a∈Ai πi(a|o) = 1. The policy can be also deterministic
πi(o) : Oi 7→Ai, where given current observation o ∈Oi, the
router sends a packet to a fixed next-hop router a ∈Ai. The
return Gi =∑

T
k=i rk is the total reward from intermediate state

si to final state sT , where si and sT are the states when a
packet arrives at the intermediate router i and destination
router T , respectively. Let s1 be the initial state when a
packet enters the network from its source router. The goal
is to find the optimal policy πi for each router i so that the
expected return J(πππ) from the initial state (E2E TE metric)
is maximized,

J(πππ) = E[Gi|πππ] = E[∑
T
i=1 ri|πππ] (1)

where πππ = π1, ...,πN . Using different reward function (e.g.,
1-hop delay di), J(πππ) can characterize different individ-
ual E2E-TE metric (e.g., expected E2E delay E[G(d)

i |πππ] =
E[∑T

i=1 di|πππ]).
In TE problems, the states are fully observable. That is,

the state is uniquely defined by the observations of all routers
(i.e., P(o|s,a)> 0 =⇒ P(s′|o) = 1). Thus, in the following
sections, for simplicity of notation, we represent an obser-
vation o as a state s. In the scope of this paper, we examine
only the E2E delay as a reward for delay-optimal traffic
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engineering. Moreover, we assume that the environmental
dynamics, which are characterized by the state transition
probability and the distribution of the rewards, are unknown
for practical real-world applications. This leads us to propose
the following model-free multi-agent reinforcement learning
framework.

III. DISTRIBUTED TE LEARNING FRAMEWORK

The proposed modular framework architecture includes
a generic composing procedure, which assembles a variety
of different algorithm and extension options to enable fast
prototyping and evaluation. It consists of three key modules,
each of which can be implemented using different algo-
rithms along with using different algorithm extensions. These
implementations can be selected and assembled in various
combinations to generate specific reinforcement learning
algorithms. This framework will be developed based on
the generalized policy iteration (GPI) strategy [24]. GPI
was initially developed to generalize single-agent value-
based reinforcement learning algorithms. We will extend it
for solving generic TE problems, which needs to exploit
emerging policy gradient based learning along with function
approximation in a multi-agent setting.

In particular, our framework consists of three interleaving
modules for each router/agent: policy evaluation, policy im-
provement, and policy execution. Let us consider a particular
router i and its policy πi to be learned. Policy evaluation
estimates the action-value functions,

qπi
i (s,a) = Eπi

[
Gi = ∑

T
k=i rk|si = s,ai = a

]
(2)

that measure the expected return (expected E2E TE metric)
if the router i performs a given action in a given state.
Next, policy improvement utilizes the estimated action-
values qπi

i (s,a) to adjust current policy πi in the direction
of greater expected return. After that, the agent executes a
behavior policy bi to generate new action-reward experiences
for next-round policy evaluation and improvement. As illus-
trated in Fig. 1, we adopt a distributed actor-critic-executor
architecture similar to asynchronous advantage actor-critic
(A3C) [25] to simplify and implement the interleaving op-
erations between policy evaluation, improvement, and exe-
cution. Each router has its own actor, critic and executor
running locally and in parallel. The local critic uses a variety
of methods to estimate the action-value functions Qπi

i (s,a),
which criticize the action selections. Based on critic’s inputs,
the actor improves the target policy that we want to learn and
optimize. Then, the executor executes the actions according
to the behavior policy, which is either equal to the target
policy or similar to the target policy but more exploratory.

A. Local Critic for Policy Evaluation

1) 1-hop Action-value Estimation: As shown in eq. (2),
the performance of the policy π is measured by the action-
value qπ

i (s,a), which is a E2E TE metric. Thus, there will be
no direct training sample for policy evaluation until a packet
forwarded by this router arrives at its destination. Inspired

Fig. 1. Distributed TE Framework which adopts multi-agent, asynchronous
actor-critic (AC) architecture. Each router’s actor updates its policy function
while critic updates the function approximation of state-action Q values.

by temporal-difference prediction [24], we can apply spatial-
difference (SD) prediction to quickly update the estimation
of qπ

i (s,a) only using local information exchanged between
adjacent routers. In particular, the action-value qπ

i (s,a) of
router i can be recursively rewritten as the sum of 1-hop
reward of router i and the action-value of the next-hop router
i+1, i.e.,

qπi
i (s,a) = E

[
ri +qπi+1

i+1 (s
′,a′)

]
. (3)

This equation (3) indicates qπi
i (s,a) can be estimated by

averaging the samples of ri+qπi+1
i+1 (s

′,a′). This leads to a sim-
ple SD predication method based on exponential weighted
average (EWA), which iteratively updates the estimate of
qπi

i (s,a), denoted by Qπi
i (s,a), based on 1-hop experience

tuples (s,a,ri,s′,a′) and the estimate of qπi+1
i+1 (s

′,a′) of next-
hop router, denoted by Qπi+1

i+1 (s
′,a′), i.e.,

Qπi
i (s,a)← Qπi

i (s,a)+α[ri +Qπi+1
i+1 (s

′,a′)−Qπi
i (s,a)] (4)

where α ∈ (0,1] is the learning rate.
2) n-hop Action-value Estimation: 1-hop action-value es-

timation can be generalized to n-hop one by using n-hop
return rn

i instead of 1-hop return ri to update the action-value
estimate. The n-hop return rn

i is the accumulated reward
when a packet arrives at the n-hop router, i.e., rn

i =∑
i+n−1
k=i rk.

For example, if the reward is 1-hop delay, rn
i represents n-hop

delay. With n-hop return, the action-value estimation process
in eq. (4) can be generalized to

Qπi
i (s,a)← Qπi

i (s,a)+α[rn
i +Qπi+n

i+n (s
′,a′)−Qπi

i (s,a)]

for all n≥ 1 where Qπi+n
i+n (s

′,a′) is the action-value of router
i+n. It is shown in previous research [26], [27], [28] (e.g.,
in video gaming settings) that n-hop/n-step estimation may
lead to better policy with higher expected return (e.g., better
E2E TE metric in our case) because the n-hop estimate has
smaller bias compared with the 1-hop one. However, n-hop
estimate may not work well in non-stationary cases and may
slow down policy learning process because of the higher
variance in the n-step estimation and the longer waiting time
to obtain n-hop return from the router n-hop away.
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3) Expected n-hop Action-value Estimation: Variance in
the action-value estimates is unavoidable because the envi-
ronment can introduce stochasticity through stochastic re-
wards rn

i and stochastic environment state transitions P .
There is little we can do to reduce the variance caused
by environmental stochasticity, except using a suitably
small learning rate α . Besides environmental stochasticity,
the action change of next-hop or nth-hop router intro-
duces additional variance. To mitigate such variance, in-
stead of Qπi+n

i+n (s
′,a′), the expected value E[Qπi+n

i+n (s
′,a′)] =

∑a′∈Ai+n πi+n(s′,a′)Q
πi+n
i+n (s

′,a′) is used to update Qπi
i (s,a),

∀n≥ 1 [29]:

Qπi
i (s,a)← Qπi

i (s,a)+α[rn
i +E[Qπi+n

i+n (s
′,a′)]−Qπi

i (s,a)].

B. Local Actor for Policy Improvement

Policy evaluation process drives the action-value function
to accurately predict the true returns (E2E TE metrics) for
current policy. Policy improvement process improves the
policy with respect to current action-value function. Policy
improvement can be done through action-value methods or
policy-gradient methods. In this paper, we focus on action-
value methods.

1) Action-value methods: Action-value control algorithms
aim to learn an deterministic target policy, which maximizes
the performance objective J(πππ) in eq. (1), i.e., the expected
return from start state, by selecting a fixed greedy action
with respect to the expected return from any state. This can
be done by letting each router i greedily improve its current
policy πi, i.e., select the action with the maximum estimated
action-value,

πi(s)← argmax
a

Qπi
i (s,a).

Since value based methods can only learn deterministic poli-
cies, this naturally leads to single-path TE solutions, where
a single routing path is learned between a source source-
destination pair. The single-path TE solutions are simple
and easy to implement. However, to improve E2E delay at
high traffic load cases, multi-path TE solutions are generally
preferred, where each source-destination pair is connected
with multiple routing paths to better distribute traffic load
and reduce E2E delay. To address this problem, two generic
near-greedy action selections can be exploited: (1) ε−greedy
policy, where with probability 1− ε , select the best action
and with probability ε , other actions are selected, and (2)
softmax-greedy policy, where each action a is selected with
a probability P(a) according to the exponential Boltzmann
distribution

P(a) =
exp(Qπi

i (s,a)/τ)

∑b∈Ai exp(Qπi
i (s,b)/τ)

where τ is a positive parameter called the temperature. High
temperatures (as τ → ∞) cause the actions to be almost
equally probable (close to random action selection). Low
temperatures (as τ→ 0) get close to the deterministic action
selection. The near-greedy methods force each router to
select next-hop forwarding nodes stochastically, which create

multiple routing paths connecting source and destination
nodes.

2) Double learning: All action-value algorithms above in-
volve maximization during the construction procedure for the
target policies. More specifically, the target policies follow
the greedy or near-greedy action selection methods given the
current action values, which are defined with a maximization
operation. In this case, the maximum of the estimated action
values is used as an estimate of the maximum of the true
action value. This can lead to a significant overestimation
bias and thus degrade the gain of the learning algorithms.
To address this overestimation bias, double learning can
be adopted [30], which decouples action selection from
its evaluation using a pair of estimators. In particular, we
divide the time steps (or equivalently the experiences) into
two sets and use them to learn two independent estimates,
namely Qπi

i,1(s,a) and Qπi
i,2(s,a). One estimate, e.g., Qπi

i,1(s,a),
can be used to determine the improved action denoted
by a∗(Qπi

i,1), according to greedy or near-greedy strategies
πi ∈ {greedy, softmax, ε−greedy}. Then, we use the other
estimate Qπi

i,2(s,a) to provide the estimation of the value of
the improved action, i.e., Qπi

i,2(s,a
∗) =Qπi

i,2(s,a
∗(Qπi

i,1)), Then,
the role of the two estimates can be reversed to yield a second
unbiased estimate Qπi

i,1(s,a
∗(Qπi

i,2)).
Double learning strategy can be combined with any policy

evaluation and policy improvement methods to create new
learning algorithms. For example, we can design the double
expected softmax learning by combining double learning
with expected action-value estimation and softmax policy
improvement. In this case, the action value update rule for
the first estimate Qπi

i,1(s,a) is given as follows

Qπi
i,1(s,a)←Qπi

i,1(s,a)+α[ri +Ψi+1,2(s′,a′)−Qπi
i,1(s,a)].

Here, Ψi+1,2(s′,a′) = ∑a∈A P(a,1)Qπi+1
i+1,2(s

′,a′) where

P(a,1) =
exp(Qπi

i,1(s,a)/τ)

∑b∈Ai exp(Qπi
i,1(s,b)/τ)

. By the same way, we

can obtain the update rule for the second estimate
Qπi

i,2(s,a). Similarly, we can also combine double
learning with greedy policy improvement, where
Ψi+1,2(s′,a′) = Qπi+1

i+1,2(s
′,argmaxa Qπi

i+1,1(s
′,a)).

C. Local Executor for Policy Execution

In reinforcement learning, the behavior policy bi is the
policy that generates the actual actions of the learning agent,
which yields the actual experiences for improving target
policy πi. For on-policy learning, the behavior policy bi
is same as the policy being improved (target policy πi).
For off-policy learning, the behavior policy bi is different
from the target policy, where the target policy is generally
the greedy policy and the behavior policy is near-greedy to
encourage explorations. The policy πi will be learned when
the evaluation process and the improvement process stabilize,
that is, no longer produce changes.
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Fig. 2. Network topology in the simulations [16]

TABLE I
HYPERPARAMETERS

Parameter value

Initial Q-values 0
Learning rate (α) 0.9
ε-greedy (ε) 0.1
Softmax Temperature (τ) 1
Multi-hop returns n 2

IV. EXPERIMENTS

A. Experiment Setup

We evaluate the performance of the learning-based TE
algorithms in a discrete-time network simulator [16], which
is widely used to investigate the performance of Q-learning
based routing algorithm and its variants [16], [17], [18], [20],
[19]. The network topology is shown in Fig. 2, where the
nodes represent routers and edges represent network links. In
this discrete-time simulation, the whole network is driven by
three major factors: the packets arrival pattern, the average
packet arrival rate, and the queuing and link delay. First,
packets are periodically generated with a randomly selected
source router and destination router for each packet. Second,
the network loads are based on the packet arrival rate and
it is driven by Poisson distribution with parameter λ , the
average number of packets injected into network per time
step. Third, when a packet arrives at a router, it has to wait
in a FIFO queue (queue length = 1000 packets) and thus
experiences queuing delay. The packet will be transmitted
over the communication link if it becomes the head-of-line
packet. The transmission delay of the communication link
needs to be constant in this simulator and accordingly, we
use the unit transmission delay for the simulations (i. e. , the
link delay is set to 1.0).

Local states at each router include the source and destina-
tion IPs of the incoming packet and local queue length, i.e.,
s = (srcIP,dstIP,queue). Action is the next-hop forwarding
node, i.e., nexthop ID. Critic sets 1-hop value estimation
(n = 1). The 2-hop value estimation (n = 2) is included
to examine the comparative efficacy of n-hop learning. In
this experiment, we investigated deterministic and near-
deterministic policies with ε-greedy (ε = 0.1) and softmax
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Fig. 3. Average of 50 runs of E2E delay patterns on low to high network
loads

TABLE II
AVERAGE E2E OF EACH NETWORK LOAD IN NON-STATIONARY CASE

Network Loads (λ )
Methods 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Shortest Pah (baseline) 3.88 4.05 4.46 6.15 215.01 437.8 441.85 441.36 441.95
Off policy greedy (baseline) 10.14 4.43 4.78 5.51 12.27 33.25 19.87 32.24 114.89
Off policy ε-greedy 10.02 4.44 4.8 5.45 16.09 31.06 16.74 34.91 117.9
Off policy Softmax 13.14 5.69 6.17 7.76 18.34 25.02 14.26 32.34 111.35
On policy ε-greedy 9.22 4.24 4.59 5.34 9.57 34.22 23.54 33.85 113.43
On policy Softmax 12.43 5.06 5.38 6.08 11.89 33.02 20.96 26.74 112.85
On policy Expected Softmax 11.74 5.12 5.55 6.3 15.03 26.89 19.66 30.05 121.32
Off policy DBL greedy 14.05 4.39 4.64 5.16 8.88 62.68 29.53 33.0 131.63
Off policy DBL ε-greedy 14.15 4.39 4.64 5.14 11.5 56.57 35.39 27.77 121.08
Off policy DBL Softmax 15.6 4.56 4.8 5.35 8.97 59.27 35.6 33.29 133.92
On policy DBL ε-greedy 17.48 4.46 4.79 8.47 40.55 46.68 12.82 30.38 119.9
On policy DBL Softmax 24.09 4.8 5.02 9.12 65.31 33.47 11.86 24.79 117.08
On policy DBL Expected Softmax 23.44 4.66 4.91 15.82 54.12 38.77 9.76 25.07 113.34
On policy DBL Expected Softmax 2hops 15.67 4.72 4.97 5.72 68.99 56.91 18.01 54.2 162.77

(τ = 1).
Off-policy, on-policy, expected value estimation (Ex-

pected), double learning (DBL), and n-hop learning (n = 2)
are employed into the framework to examine the efficacy
of learning-based adaptation. Two baseline algorithms are
also included: the shortest-path routing and the off-policy
greedy algorithm (i.e., Q-routing [16]). In particular, for Q-
routing, both behavior and target policies are greedy and the
explorations are implicitly driven by the changes in action
value (Q-value) estimations. The hyperparameters of learning
algorithms are summarized in table I.

B. Varying Traffic Loads: Low to High

Unlike previous research that has tested algorithms in
single traffic load case, we consider the low to high load
condition to study the overall performance of all adaptive
learning algorithms in non-stationary network environment,
where the state transition probability function keeps changing
as traffic load increases. In this experiment, the following
changes to the network parameters were made according to
time. We initialized Q-table values with 0. The first 10k time
steps were given for the initial exploration at a low load
λ = 0.5. λ is increased by 0.5 for every 10k time steps.
From pilot tests, we select the best performing learning rate
α = 0.9 for all algorithms except 2-hop learning algorithm,
whose optimal learning rate is α = 0.5.

The results in Fig. 3 and Table II show that all of
reinforcement learning approaches learn efficient routing
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Fig. 4. Average of 50 runs for E2E delay under high network increasing load conditions. For each run, we measured the average delivery time for 10,000
time step or every network load changes in (a) and every 1,000 time steps in (b)

TABLE III
AVERAGE E2E DELAY PRESENTED IN FIG. 4

Network Loads (λ )
Methods 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4

Off policy greedy (baseline) 75.47 13.21 16.54 19.78 24.14 29.72 41.25 60.67 109.97 194.45
Off policy ε-greedy 77.51 14.93 18.46 21.75 27.53 29.98 36.69 55.91 103.57 193.79
Off policy Softmax 78.88 15.33 19.97 21.92 25.95 33.13 44.8 61.25 105.06 189.23
On policy ε-greedy 75.33 12.66 18.89 21.3 24.62 31.13 44.14 59.76 107.58 190.17
On policy Softmax 78.29 14.27 18.68 23.23 23.46 35.99 40.41 56.51 106.54 193.22
On policy Expected Softmax 76.0 12.21 14.85 19.05 24.75 30.54 39.04 56.79 102.35 189.33
Off policy DBL greedy 115.44 11.31 14.28 17.67 20.57 31.16 42.65 64.47 127.45 211.62
Off policy DBL ε-greedy 114.92 9.92 12.67 16.48 18.65 23.53 35.85 60.62 122.09 207.46
Off policy DBL Softmax 113.82 10.53 11.43 13.39 18.66 23.76 36.11 58.76 112.81 200.47
On policy DBL ε-greedy 119.95 10.72 13.26 16.03 20.36 27.69 35.84 57.07 115.98 202.2
On policy DBL Softmax 136.85 11.68 14.65 17.81 20.49 25.09 32.76 45.25 92.22 189.29
On policy DBL Expected Softmax 136.71 10.95 12.94 16.71 18.23 24.93 29.77 43.66 90.99 192.62
On policy DBL Expected Softmax 2hops 200.28 12.24 13.13 15.34 20.53 27.83 41.85 63.91 109.42 201.08

policies while the shortest path routing scheme failed to
tolerate the increased packet loads (when λ > 2.0). Dur-
ing the medium traffic loads (2.0 ≤ λ ≤ 3.0), off-policy
learning algorithms outperform on-policy algorithms, where
off-policy softmax with double learning is the best one
during the load (2.0 ≤ λ ≤ 2.5) and off-policy softmax is
the best during the load (λ = 3.0). During high traffic loads
(3.5≤ λ ≤ 4.5), on-policy algorithms outperform off-policy
approaches. Moreover, for on-policy algorithms, expected
value evaluation helps to improve the delay performance
due to the smaller variance in the return estimation. Double
learning, for most of the cases except loads (λ = 3.0), is
beneficial by reducing maximization bias. Softmax action-
selection, in general, helps the agent to select second-best
control links with a probability, and it helps exploration
of other paths to balance the traffic in high network loads
and to reduce average packet delivery time. 2-hop learning
algorithm does not bring much performance gain.

C. Adaptivity under High Traffic Load Region

In this experiment, we further investigate the performance
of the learning algorithms in high-traffic load cases. We
increase the network loads from λ = 3.5 to λ = 4.4 by 0.1 on
every 10k time steps. As illustrated in Fig. 4(a) and Table III,
when network loads are high, double learning algorithms
with softmax action selection (orange, red, and brown solid
lines) shows highest adaptivity and best performance. As
network loads further increases, off-policy double learning

adapts poorly, comparing to on-policy double learning al-
gorithms after λ = 3.9. These results show additional ex-
ploration, leaving from deterministic policy, helps balancing
high network traffic loads. Both softmax and on-policy
learning add efficient exploration for this, and avoiding over-
estimation with double-learning improves overall E2E delay
performance. Fig. 4(b) shows the delay performance with
higher time resolution, where the average packet delay is
computed for every 1,000 time steps. We observe that all
algorithms take some time to learn and eventually adapt to
the traffic load changes well.

D. Convergence Analysis under a Stationary Case

In Fig. 5, with fixed high network loads (λ = 3.5) , we
test the convergence of learning modules using different
learning rates (0.1 and 0.9, respectively). The fixed traffic
load case represents stationary network condition, where
state-transition probability function converges as time pro-
ceeds. As shown in Fig. 5, all learning algorithms converge
eventually. Table IV summarizes the convergence time and
the delay performance of each algorithm. As expected, low
learning rate (α = 0.1) leads to better delay performance with
less divergence for all algorithms by observing more samples
for learning (thus, taking more learning time). High learning
rate (α = 0.9) shortens the convergence time at least by
half to reach fairly good (through not optimal) performance.
This also explains why high learning rate leads to the
overall better performance in non-stationary environment
with changing traffic loads. Moreover, we observe the double
learning models stably converges the best results for both
low and high learning rates. With high learning rate, double
learning algorithms only need one third of convergence time,
compared with low learning rate case.

E. Discussions

We have demonstrated that combining several techniques
such as Double learning, Expected action value estimation,
and Softmax on-policy into a single learning algorithm
minimizes E2E delay specially in high-traffic load region.
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(a) High learning rate (α = 0.9)
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(b) Low learning rate (α = 0.1)
Fig. 5. Average of 50 runs for convergence of learning algorithms in fixed high network loads (λ = 3.5). For each run, we measured the average delivery
time for every 100 time steps

TABLE IV
AVERAGE E2E DELAY PRESENTED IN FIG. 5

Methods α = 0.9 convergence time α = 0.1 convergence time

Off policy greedy (baseline) 10.89 ±0.35 4,000 8.61 ±0.06 10,000
Off policy ε-greedy 10.88 ±0.32 4,000 8.63 ±0.1 10,000
Off policy Softmax 12.11 ±1.1 4,000 8.43 ±0.07 10,000
On policy ε-greedy 11.34 ±0.47 5,000 8.53 ±0.06 10,000
On policy Softmax 12.44 ±0.32 5,000 8.57 ±0.06 10,000
On policy Expected Softmax 12.41 ±0.6 5,000 8.45 ±0.05 10,000
Off policy DBL greedy 8.71 ±0.07 6,000 8.12 ±0.06 17,000
Off policy DBL ε-greedy 9.06 ±0.12 6,000 8.02 ±0.04 17,000
Off policy DBL Softmax 9.02 ±0.13 6,000 7.86 ±0.04 17,000
On policy DBL ε-greedy 9.26 ±0.2 6,000 8.70 ±0.23 19,000
On policy DBL Softmax 9.48 ±0.12 7,000 8.78 ±0.27 19,000
On policy DBL Expected Softmax 10.23 ±0.6 7,000 8.29 ±0.08 19,000
On policy DBL Expected Softmax 2hops 10.63 ±0.19 8,000 8.64 ±0.07 19,000

2-hop action-value estimation did not bring so much benefit
partially because 2-hop estimation leads to lower estimation
bias at the cost of higher estimation variance and lower
learning speed. The combined effect may not necessarily lead
to improved performance specially under the non-stationary
environment. In the non-stationary case (varying network
loads), we observed that high learning rate (λ = 0.9) is
the best for all algorithms since the agent needs to learn
and adapt policy quickly when network load changes. High
learning rate allows agents to take the most updated reward
(per-hop delay) into the return (E2E) estimation, while
quickly forgetting the previous outdated estimation. Double
learning in overall can effectively improve delay performance
specially in medium and high traffic load region due to
the reduced maximization bias. Double learning does not
perform well during low traffic load region because only half
of the experience is used to train each Q table and low traffic
load means less experience. Expected action-value estimation
can lead to improved performance specially in high traffic
load region because of the reduced variance in estimated
action-value. In this paper, a constant high learning rate is
exploited, which may not be the best choice. One possible
solution is to use adaptive learning rate. We could use high
learning for agent to adjust their policy when network load
changes, but when it converges and stable, we can decrease
the learning rate to reach the best optimal policy.

V. CONCLUSIONS

In this paper, we formulate distributed TE problems in
reinforcement learning problems and suggest a compos-
able framework for diverse learning algorithm application.
Through extensive comparative experiments, we demon-
strated high adaptiveness of learning-based distributed TE
approaches, which lead robust load-balancing network sys-
tems that minimize the E2E delay. Empirically, we were
also able to observe that reducing over-estimation bias with
double-learning along with non-deterministic action selec-
tion with softwax improves adaptivity and sustainability of
network systems.
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