
Can A Reinforcement Learning Agent Practice
Before It Starts Learning?

Minwoo Lee∗ and Charles W. Anderson†
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523-1873

Email: ∗lemin@cs.colostate.edu, †anderson@cs.colostate.edu

Abstract—A reinforcement learning (RL) agent needs a fair
amount of experience to find a near-optimal policy. Transfer
learning has been investigated as a means to reduce the amount
of experience required. Transfer learning, however, requires
another similar reinforcement learning task as a transfer source,
which can also be costly in the amount of experience required.
In this research, we examine the possible “practice” approach
that transfers knowledge from a non-RL task to a target RL
task to avoid the expensive data sampling. We analyze how
practice captures the distributions of state and action spaces in
an environment. For this, we develop a novel learning approach
that acquires important samples from practice and then applies
them to a target RL task without changing learned bases. Results
show an improved learning efficiency through practice in classical
benchmark problems and limitations in OpenAI Gym problems.

I. INTRODUCTION

Natural intelligence is developed from acquired experience
and adaptation to new environments, resulting in the learning
of new knowledge. The repetition of this cycle constructs new
knowledge and sharpens acumen. Machine learning studies
have tried to mimic this behavior and have shown successful
transfer of knowledge in various domains. The benefits from
transfer learning in supervised learning have been shown in
textual data classification [22], natural language processing
[4], image classification [34], WIFI localization [35], spam
filtering and intrusion detection [8].

Transfer learning can boost reinforcement learning (RL) in
many tasks, such as video games [19], robot soccer [28], and
even the complex game of Go [25]. In reinforcement learning,
since the samples for training contain an agent’s behavior,
schemes in addition to simple parameter value transfer can
be adopted, such as smooth landing imitation [17], [6] and
advising [32], [31]. However, these approaches are limited
to knowledge exchange between two reinforcement learning
tasks. When the target task or the goal is not unveiled, it is
impossible to collect knowledge for transfer.

This study is motivated by Anderson, et al., [1] that have
shown that pretraining neural networks for state transition
prediction resulted in successful and more efficient training
of a reinforcement learning agent. By using simple weight
transfer, they examined how the transfer of learned weight
values contributes to the subsequent reinforcement learning
problem once the reinforcement signal is introduced. However,

with weights from pretrained networks, it is hard to understand
or explain how pretraining helps learning the successive tasks.

To better understand the benefits of practice, we focus
on recent studies with relevance vector machines (RVM) for
reinforcement learning tasks. Their additional analytical power
through a Bayesian interpretation can help us observe how
practiced knowledge assists successive learning. Lee and An-
derson [14] showed that function approximation with relevance
vector machines (RVM) can retrieve key experiences from
learning and the gradual knowledge augmentation improves
the robustness of learning. Also, they further improved the
framework with efficient continuous action sampling [13].
Rexakis and Lagoudakis [23] successfully use the sparsity of
an RVM classifier on their directed rollout classification policy
iteration (DRCPI-RVM) framework. Because of the sparse
nature of RVMs that capture the significant mass of an agent’s
experience, an RVM-based reinforcement learning framework
(RVM-RL) [14] can help us understand how state transition
prediction in Anderson, et al., [1] improves the performance of
reinforcement learning. For this, we use a modified version of
RVM-RL as a learning framework to collect the experiences
in practice to explain what knowledge an agent obtains from
practice and how it can be applied as a feature space for
reinforcement learning.

A major contribution of our work is examining the effect of
practice by an RL agent before starting to learn the solution
to an RL problem. As humans practice to develop faster
reactions or better performance in real situations, practice
in reinforcement learning even without any goal-directives is
expected to improve subsequent learning with reinforcement
signals. Additional experience with knowledge construction
from practice, in the form of sets of relevance vectors (RVs),
turns out to be the key reason that makes this work. We demon-
strate how practiced knowledge contributes to reinforcement
learning by fixing the RV bases with the suggested framework.
We will discuss this in detail in the following sections.

In Section II, we briefly summarize pretraining deep net-
works and RVM-based RL framework, and in Section III
we introduce our novel approach for practice and fixed-basis
training. Benchmark experiments and results of the proposed
approach are summarized in Section IV, and we discuss how
practice helps reinforcement learning and possible improve-
ment in Section V.



Fig. 1. Neural networks for state change prediction and Q estimation.
First, neural networks are trained to predict state changes. Then the role of
the final layer is changed from predicting state change to predicting future
reinforcement as the value of a Q function.

II. BACKGROUND

A. Pretraining Deep Networks for Reinforcement Learning

Anderson, et al., [1], demonstrated how learning the dynam-
ics of an environment can facilitate the learning of a Q function
in multilayered neural networks. For complex problems in
practice, pretraining neural networks can greatly reduce the
number of interactions with an environment that are required
to achieve good performance.

Fig. 1 explains how network weights are pretrained and
transferred for learning a Q function. To pretrain the neural
networks, state transition samples of state st, action at, and
next state st+1 are collected. From the samples, st and at are
used as input and st+1− st forms the target output to fit. The
scaled conjugate gradient (SCG) algorithm [20] was used to
train the network to minimize the mean squared error in the
outputs. For this pretraining stage, any reinforcement learning
related information such as rewards, goals or objectives is not
provided.

After pretraining the networks, a reinforcement learning
agent collects mini-batches of st, at, reward rt+1, st+1, and
at+1 samples. With these mini-batches, the pretrained neural
networks are further trained to estimate Q values by minimiz-
ing the Bellman error with SARSA [27] update. Again, the
SCG algorithm is applied. To lessen the chance of overfitting
with each mini-batch, the number of iterations of the SCG
algorithm is limited to a small number.

B. RVM-RL

To apply relevance vector machines (RVMs) [30] to rein-
forcement learning, Lee, et al., [14] extended a mini-batch
training framework, fitted-Q [24], to transfer learned RVs in
each step as illustrated in Fig. 2. The framework gradually
augments the experience to learn efficiently. From a collection
of mini-batch samples, an RVM is trained. After evaluating the
trained RVM according to its error in reinforcement prediction,
a heuristic decision is made to transfer the learned RVs to the
next mini-batch iteration or to discard the learned RVs. When
RVs pass this evaluation test, the target function approximator
is adapted by adding the RVs and by updating the weights
with stochastic gradient descent.

Fig. 2. RVM-RL learning framework. Based on the sparse solution from an
RVM, knowledge is gradually augmented and heuristics maintain the sparsity
after learning. The sparse solutions provide additional interpretation about the
learned policy.

In these series of learning steps, this approach resembles
models of redundancy elimination (infomax principle) [16], [7]
and the sequential building of encoded knowledge. Through
RVM optimization, we apply the principle of efficient coding
to represent knowledge. By transferring and updating the target
function approximation, knowledge is accumulated to help
find an optimal solution to a particular problem. That is,
RVM-RL gradually increases its knowledge about the RL task
from experience until it eventually reaches a good solution.
This knowledge accumulation has been tested in continuous
state benchmark problems. In the next section, an approach is
presented to quickly discover the core information to hasten
the learning process, which can lessen the required sampling
time.

III. RVM PRACTICE FOR REINFORCEMENT LEARNING

Here, we replace the term pretraining with the more gen-
eral term practice. We focus on discovering knowledge that
summarizes the dynamics of an environment. We adopt the
relevance vector machines to discover such knowledge. We
develop fixed-basis RVMs to examine the obtained knowledge
efficacy for efficient reinforcement learning. For this, we first
summarize the slight modifications to the RVM-RL framework
with a fixed-basis and describe how to incorporate practice
in the learning of an agent and how to apply this to actual
problems.

A. Fixed-basis RVM (fRVM)

For efficient learning, the fast marginal likelihood maxi-
mization algorithm for RVMs [30] adds or removes bases, as
defined by the set of RVs, to find the best fit that maximizes
the log-likelihood. However, when we already know the best
bases or alternative ones, it is not necessary to go through
the RV addition or removal process. Assuming that XRVM



Fig. 3. fRVM with preset RVs (red dots). Blue dots represent the training
samples and red line shows the prediction curve fit.

are relevance vectors, we can define the feature vector φ with
kernel k(·) as follows:

φ(x) = k(x,XRVM).

Now, we can alternatively compute the following weight mean
and covariance and prior distributions without modifying RV
bases. First, compute the mean and covariance of the weights.
Here, Φ, representing φ(x), is the similarity of x to the preset
relevance vectors:

µ = βΣΦ>t

Σ = (βΦ>Φ + αI)−1.

From the weight estimation, the hyper-parameters are com-
puted:

γi = 1− αiΣii,

αi ←
γi
µ2
i

,

β ←
N −

∑
i γi

‖t−Φµ‖2
.

Here, α and β represent the hyper-parameters for the prior
distribution of weights and target. γi is interpreted as a
measure of how well-determined the weight wi is by the data.
Φ can be defined as a matrix composed of training vectors
transformed by the basis function. t is the Q-learning target.

Fig. 3 shows the application of fRVM to a classic quadratic
sine curve fit problem from Tipping, et al., [29]. Manually
setting the seven fixed RVs, we can obtain good predictions
with the radial basis function (RBF) kernel parameter γk =
0.06 and tolerance 1× 10−3.

B. RVM-based Practice for RL

In the practice stage, a regular RVM predicts state changes
and discovers the relevance vectors for reinforcement learning
tasks. Our hypothesis is that learning the dynamics of the
world can result in the discovery of knowledge that can be ap-
plicable to reinforcement learning tasks. This was empirically

examined with deep networks [1]. We expect this will be the
same with a RVM function approximation. RVMs relate the
learned experience to input samples, so we expect to interpret
what was learned in the practice stage more easily than from
the pretrained neural network structures.

To improve the learning speed and examine the practice
contribution, we adopt fRVM-based reinforcement learning
that do not change RV bases. In previous section, we observed
fRVMs can fit well when the bases are known. From the
randomly explored or collected samples, we can train an RVM
to predict the next state or the difference between current
and next state. The learned RVM produces relevance vectors
that capture key dynamics of an environment. Assuming these
RVs are known bases, we can build a fixed-basis RVM
for reinforcement learning (fRVM-RL). Now the fRVM-RL
adjusts weights, so it estimates Q vales based on similarity
kernel features to the learned RVs.

In a reinforcement learning framework, we use fRVM as a
function approximator that estimates Q-values. Unlike RVM-
RL, it does not need to maintain multiple RVMs and does
not need to transfer RVs in each step. It simply updates
weights following the RVM update rules. Thus, after practice
results in good bases for reinforcement learning, fRVM-RL
can learn a policy very efficiently. Algorithm 1 describes the
learning algorithm for practice and fRVM-based reinforcement
learning.

Algorithm 1 RVM-Practice and fRVM-RL
Collect L samples of tuple (s, a, s′) using environment
dynamics.
Set regression target z = s′ or the state changes z = s′− s.
Train RVM and discover basis RVpractice and weights
wpractice.
Initialization: the basis sample XRVM and weights w of
fRVM with practiced RVpractice and wpractice.
Choose discounting factor γ ∈ (0, 1] and learning rate c.
for each mini-batch do

Select action at given state st by ε-greedy action selec-
tion. Apply at to arrive at st+1.
Observe N samples, (st,at, rt+1, st+1) at consecutive
time steps t.
Set target y = rt+1 + γmaxaQw,α,β(st+1, a)
Train fRVM
w = (1− c)wt + cwt+1

Decreases ε
end for

How to collect practice samples to improve the target
learning performance is a significant issue. Various practice
approaches can be investigated but in this paper, we focus
on previously examined state-transition dynamics samples and
random sample collection. First, we can use a simulation of
a dynamic system to generate samples. In this case, we can
have two different options for the regression target, the next
state or the difference between the next state and current state.
When using dynamics simulation, the next state is close to the



previous state and the samples are more likely dependent on
each other, which can require more samples for the practice
stage. With the state difference target, we can reduce the
required number of samples and increase the independence
of samples. Random sampling can be used when there is no
simulation model for dynamic sampling. Without knowing the
dynamics of the world, it randomly generates samples with a
certain distribution. Also, it can reduce the possible biased
sampling from simulated dynamics. However, it is difficult
to understand what it learned from this randomly sampled
practice by disconnecting correlation between st and st+1

since st+1 is not dependent on st and at. Further strategies
should be investigated for better practice models and efficient
reinforcement learning. We will discuss more about this issue
in following sections.

IV. EXPERIMENTS

We investigate the efficacy of RV bases that is built by
RVM-based practice with two classic reinforcement learning
benchmark tasks. The first task is the mountain-car problem
consisting of an under-powered car that must climb up a hill is
tested. For the second task, we test the pole balancing problem
in which a pole must be balanced by pushing on the cart to
which it is attached. We compare RVM-based practice meth-
ods on these tasks with the following RL algorithms. Neural
fitted-Q learning (NN) is a well-known successful learning
framework with a similar mini-batch learning structure. The
Gaussian process temporal difference (GPTD) algorithm has
a Bayesian structure similar to RVMs. Finally, RVM-RL is
included to allow the direct examination of the efficiency of
practice.

To examine the cases with large search space for practice,
we apply the proposed fixed RVM-RL to two Box2D problems
in OpenAI Gym. The first task is the lunar lander that controls
a spaceship control task that fires main and side engines
to smoothly reach on the landing pad. The second task,
car racing, is to learn how to control a car from the top-
down racing track image pixels. Both problems require large
amounts of exploration to obtain a good policy. Although
solutions are found for lunar lander, yet no one found solutions
for the car racing task. With these two examples, we discuss
the limitations of fixed bases learning approach.

A. Mountain Car

The mountain car is a popular dynamics problem that
controls an under-powered car that cannot climb directly up
the right hill, but must first be pushed up the left hill to gain
enough momentum to reach the goal at the top of the right hill.
Available actions are push forward (+1), push backward (-1),
and no acceleration (+0). The optimal solution that needs to
initially drive the car away from the goal makes the problem
harder. This continuous control dynamics are described in
detail in [26].

The state is represented in two dimensions: the car position
xt and its velocity ẋt. Following the classic mountain car, we
assign a reward −1 on each time step. When it reaches the

goal (xt = 0.5) at the top of the right hill, the agent gets the
reward 0 and is restarted from a random position. With this
random position restarting, the fixed number of samples are
collected for training. The described reinforcement function is
defined as follows:

rt =

{
0 if xt ≥ 0.5

−1 otherwise

For the practice stage, we randomly generate samples p =
(xt, ẋt) in the range of xt ∈ [−1.2, 0.5] and ẋt ∈ [−2.0, 2.0].
10 repetitions of the generation of 1000 practice samples result
in different numbers of RVs, ranging from 12 to 18. During
this practice stage, the RBF kernel parameter γk is set to 1.0,
and the maximum number of iterations is limited to 100.

The reinforcement learning discount factor γ is set to
0.9. To test with a small number of exploration actions,
we exponentially decrease ε from 1 to 0.1 with a factor
0.9885. With the decreasing ε, actions are chosen by ε-greedy
algorithm. This is repeated 1000 times. The mini-batch of
1000 steps is used to update the fRVM weights for Q function
estimation. This is repeated for 200 mini-batches. For fRVM-
RL training, we preset the fRVM with the RVpractice achieved
from the practice stage. The RBF kernel parameter γk is not
changed from 1.0 to accommodate the achieved knowledge.
The learning rate c = 0.2 was best-performing in our pilot tests
and used for the mountain car task tests. The fRVM maximum
number of iterations is set to 10. Neural networks with two
hidden layers, each of 20 units, are chosen for comparison.
Moller’s scaled conjugate gradient optimization algorithm [20]
was limited to 20 iterations to avoid overfitting. For GPTD,
the RBF kernel parameter γk = 0.01, the accuracy threshold
v = 0.1, the convergence threshold η = 1× 10−4, and initial
standard deviation σ0 = 0.1 result in the best performance.

fRVM updates only the weights in the middle of training,
and as we can see in Fig. 4, fRVM-RL quickly finds the
best policy. Comparing the convergence point, fRVM-RL with
practice converges to good performance with 100 fewer mini-
batches than the previously best performing algorithm, RVM-
RL. Since we start ε = 1, we observe that the starting points
of the curves are not different, and the transferred weights
are not utilized for jumpstart test. However, by not adding
or removing bases in the middle of training, the training is
simplified with linear weight updates that reduces learning
time considerably. Most of all, this exemplifies the RV bases
obtained from practice well capture the distributions of main
factors for correct Q estimation.

B. Pole Balancing

Adding a pole to a cart that swings in two dimensions,
Barto, et al., [2] first introduced the benchmark pole-balancing
problem. The objective is to apply forces to a cart in a given
track and to keep the pole from falling over. Three actions to
control the cart are defined: move left, move right, and apply
zero force. We define this problem as a continuing task with
discounting factor γ, so the goal is to maintain the pole upright
as long as possible.



Fig. 4. Average of steps to reach the goal in mountain car problem. The
average curve line is computed from 10 experiments. Practice reduces the
required number of samples greatly. 1000 samples (the number of steps in one
minibatch) are used for practice. The shaded areas represent 95 % confidence
interval. .

The state of this system is four dimensional: the cart position
xt, its velocity ẋt, the pole angle θt, and the angular velocity
θ̇t. When the angle θt = π, the pole is upright. The reward
function is defined in terms of the angle as follows:

rt =

{
1 if |θt − π| < π

3

0 otherwise

Thus, when it can balance the pole through the simulation
time, the optimal policy will lead to an average reward of 1.0.

For the practice stage in the pole balancing environment,
we use dynamic simulation and train an RVM to predict state
changes. 100 practice samples are good enough to produce
the necessary bases for fRVM-RL training. In 30 practice
stages, RVMs produced from 7 to 20 of RVs. For practice, the
RBF kernel parameter γk = 20, and the maximum number of
iterations is limited to 100.

All tests share the discount factor γ = 0.99 and decrease ε
from 1.0 to 0.1 exponentially. For training, 100 mini-batches
with 1000 samples each are collected. fRVM-RL uses the RBF
kernel parameter γk = 20 and the learning rate c = 0.2.
The best parameters for the neural networks and GPTD were
found from pilot tests. Neural networks with 10 units in each
of two hidden layers was the best performing structure with
the maximum number of iterations for SCG was set to 80.
GPTD performed best when v = 1×10−5 and η = 0.1 Initial
standard deviation σ0 = 10 and the RBF kernel parameter γk
is set to 1 × 10−5. As we can see in following results, even
with the best parameters, we cannot make the two function
approximators work in 100 minibatches. They required twice
as many samples to find an optimal policy.

Similar to the mountain car task, we can observe that
practice greatly contribute establishing good basis for rein-
forcement learning function approximation. The fRVM-RL

Fig. 5. Average of rewards for each episode in cart-pole balancing. Again,
practice helps to converge quickly at the optimal policy. 100 samples (10 %
of the number of steps in one minibatch) are used for practice. The shaded
areas represent 95 % confidence interval.

quickly reaches the optimal point and steadily converges.
Comparing to RVM-RL, fRVM-RL can save more than 40
mini-batches that contain more than 40,000 samples. For the
pole balancing task, we found that adding 100 samples for
practice results in learning good performance quickly, reducing
the number of samples needed to approximate Q function
correctly by 40,000 samples.

C. Racing Car and Lunar Lander

To examine the efficacy of practice in complex problems,
we applied the fRVM-RL to Box2D problems in OpenAI
Gym such as CarRacing-v0 and LunarLander-v2. In the
LunarLander-v2, an agent chooses one of four actions: noth-
ing, fire left orientation engine, fire main engine, and fire right
orientation engine. The goal is landing the craft on the landing
zone smoothly. Thus, the reward between 100 and 140 is given
when it lands near zero speed. When it lands in the goal and
rests, it gets additional 100 while it gets −100 when it crashes
on the surface. Firing main engine cost -0.3, and each leg
contact to ground gives 10.

For this problem, most samples that are collected during
practice are only the crashing on the surface. Thus, without
strategic practice sampling, it gathers samples without any
positive bases around the high rewarding states, and resulting
bases make feature values to near-zero, preventing a good
estimation of Q values.

This problem gets worse in CarRacing-v0. CarRacing is
a problem that controls a racing car from the top-down
image of the racing environment. An agent controls steering,
acceleration and deceleration. The states are represented by 96
by 96 image pixels, and each frame costs -0.1 reward value.
Visiting each track tile is worth 1000/N when the number of
track tiles are N .



Similar to LunarLander-v2, CarRacing practice does not
sample enough. Mostly it gathers samples around the starting
position and makes it hard to estimate Q values when a car
travels far from the starting region with zero feature values.
Thus, more strategic practice approaches are required for
complex domain problems. We will discuss this issue in next
section in detail.

V. DISCUSSION

From the results in the previous section, two questions arise.
How does the kernel parameter affect learning? After fRVM-
RL training, does it select right basis only for the RL task?
We discuss these questions in this section.

A. Analysis of Practice

To answer the first question, we plot Fig. 6. The blue line
represents the mean of the area under the mean reward curve.
For this plot, 10 test results for each γk value are collected.
The red line and green line represent the number of RVs after
practice and active RVs after RL-train. Here, the number of
active RVs are recorded by counting the weights greater than
1.0× 10−5 in magnitude.

As γk grows, the base width for RBF gets smaller, which
results in more of RVs. However, the number of active RVs
decreases because only task-related bases will capture the
significant mass [33]. Thus, we can observe that with an RBF
kernel, the selection of the kernel parameter greatly affects
basis construction and reinforcement learning performance.

Another observation from Fig. 6 is the difference between
sampling methods. With random sampling, the practice stage
generates a larger number of RV bases while dynamic sam-
pling eliminates unnecessary RVs. In the case of next state
prediction, the small state change makes the sample similar
to existing bases so that it can discard similar RVs. With
state change prediction, the RVM can remove samples that do
not incur state changes, which can also result in a reduction
in the number of RVs. Interestingly, when a large number
of RVs are used as a fixed basis, the active RVs are spread
over almost all of the basis and the number is not reduced.
We can intuitively assume that this is caused by the small
likelihood that randomly generated samples coincide with the
true basis. This investigation answers the question that we
raised in our previous pretraining study with neural networks.
Random generation of samples seems to be less likely to
generate a good basis that is near-orthogonal.

B. Construction of Bases

A few authors have previously studied basis construction
for supervised learning or semi-supervised learning. Raina,
et al., [21] posed the self-taught learning approach that re-
quires the learned structure (or basis) from unlabeled data
to be applicable to labeled classification tasks. This enables
transfer from unsupervised learning to supervised learning
tasks by building a basis from unsupervised learning train-
ing. Deep learning [10], [9], [5], [3] pretrains hidden layers
of neural networks in unsupervised ways and learns the

(a) random sampling

(b) dynamic sampling - next state prediction

(c) dynamic sampling - state change prediction

Fig. 6. The effects of the RBF kernel γk selection with different sampling
and target options. The green dashed dot line represents the number RVs
after practice, and the red dashed line shows the number RVs with non-zero
weights. The blue line depicts the mean of the area under the reward curve.
The blue line is scaled on the left reward y-axis and the other two are scaled
on the right # RVs y-axis. Only average values are presented for clear reading
of plots. The variances of the number of RVs (green and blue) are less than
1 in (b) and (c) and less than 6 in (a). The range of variation in the reward
values is between 1.06 and 6.89.



network connectivity structures to be applicable to a target
supervised learning task. However, none of these considered
reinforcement learning tasks that learn from evaluations of an
agent’s behavior or reinforcements rather than from known
output labels. Anderson, et al., [1] first proposed constructing
neural network structures from state dynamics prediction for
reinforcement learning. However, it is difficult to interpret the
learned network structure. By using RVMs, we clearly see
the RV bases and how features are generated with a kernel
function. This increases the understanding of the learned bases
and environment dynamics.

Furthermore, by providing fixed-basis RVM, the approach
increases the efficiency of learning. Classical radial basis func-
tions [27], polynomial bases [12], and Fourier bases [11] work
well, but how to select a basis is not well understood. Learning
in a small source task, proto value functions (PVFs) [18]
automatically specify an ortho-normal set of basis functions.
This bases can be transferred to tasks with different goals or in
a slightly different state space. Practice poses a harder problem
and requires samples without reinforcements or objectives.
The RVM bases learned through practice can be transferred to
a broader range of tasks than PVFs.

When the RV bases are well-established from practice, they
support successful learning. As we discussed earlier, when
unstable sampling or learning parameters are chosen, it is
possible to learn poorly on reinforcement learning tasks. For
efficient practice, we can investigate 1) kernel methods for
reliable basis construction, 2) practice strategy development,
3) search space reduction, 4) cyclic training of practice and
learning, and 5) non-fixed, dynamic learning based on prac-
ticed knowledge.

Knowing the effectiveness of bases can automate the basis
construction during practice. That is, we can automate the
process of finding a good kernel and its parameters. Also,
when the found bases are not good enough, we can restart
practice or increase the number of samples. Or, with cycles of
practice and reinforcement learning, learning can be improved
further.

For this, we examine if there is any correlation between
the hyperparameters and average rewards. Some preliminary
tests were run to evaluate this and collected 100 samples with
successful runs (

∑
t rt >= 0.9 ∗ N where N is the number

steps) and poor ones (
∑
t rt < 0.9 ∗N ).

We recorded practice RMSEs, log likelihoods, and variances
for each output dimension along with average rewards. We
observed that the data is scattered wide and trends are not
obvious (Fig. 7). We tested some classification algorithms,
such as LDA, QDA, linear and nonlinear logistic regression,
to see if it can be classified. The label is set to true if the mean
reward is greater than 0.9 and false otherwise. Table I shows
the classification accuracy with the 12 features. Nonlinear
logistic regression seems to clearly separate successful cases
by looking at the RMSE, variance and log-likelihood. This
tells us that the selected features are strongly related to the
subsequent reinforcement learning performance, so can be the
bases for an approach to predicting the success of a practice

(a) rmse1 (b) var1 (c) loglike1

(d) rmse2 (e) var2 (f) loglike3

(g) rmse3 (h) var3 (i) loglike3

(j) rmse4 (k) var4 (l) loglike4

Fig. 7. Scatter plots of features against average rewards. Errors, variances,
and log likelihoods for each dimension are selected features.

TABLE I
PRELIMINARY EVALUATIONS FOR EXAMINATION OF AUTOMATED

PRACTICE WITH 100 PRACTICE AND FRVM-RL SAMPLES

Classifier Accuracy

LDA 63 / 100

QDA 69 / 100

Linear Logistic Regression 74 / 100

Nonlinear Logistic Regression 100 / 100

model. We will investigate this further with more samples and
other environments to examine if it can be generalized to other
tasks.

VI. CONCLUSION

We examined the efficacy of practice for reinforcement
learning tasks and observed increased efficiency. By training
an RVM and obtaining RV bases from dynamics prediction,
we were able to successfully transfer the bases and to show
improved learning in classical benchmark problems. With
fixed basis learning, we demonstrated how effectively practice
establishes bases in these examples. Also, we observed the
limitations of practice when the tasks get complex. Discussion
leads to plans for investigation of more efficient ways to
practice and the measure that evaluates how well bases are
constructed.



A major contribution of this research is the demonstration
of the importance of practice in a machine learning context.
Without providing any objective or reinforcement, practice
with an RVM extends exploration before starting to solve the
actual RL task and generates sparse but helpful bases.

From our discussion about results and practice evaluation,
we can further investigate stable kernel methods and search
space reduction. Practice strategies such as human or agent
guided practice (”coaching”), and cyclic repetition of short
practice and short learning will be interesting direction for
future study. Allowing adaption of the basis learned from
practice might be necessary not only to compensate for lack
of practice but also to be easily extended to the continuous
action tasks [15], [13]. However, investigation of efficient
transfer learning should be studied due to possible disturbances
from practice. This line of research will be continued through
additional experiments with the OpenAI Gym tasks.

REFERENCES

[1] C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement
learning after pretraining deep networks to predict state dynamics,” in
International Joint Conference on Neural Networks (IJCNN), 2015.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man and Cybernetics, no. 5, pp. 834–846,
1983.

[3] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[4] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with struc-
tural correspondence learning,” in Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing, 2006, pp. 120–
128.

[5] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
The Journal of Machine Learning Research (JMLR), vol. 11, pp. 625–
660, 2010.

[6] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-
ment learning agent,” in Proceedings of the fifth International Joint
Conference on Autonomous Agents and Multiagent Systems, 2006, pp.
720–727.

[7] K. Friston, “The free-energy principle: a unified brain theory?” Nature
Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[8] J. Gao, W. Fan, J. Jiang, and J. Han, “Knowledge transfer via multiple
model local structure mapping,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2008, pp. 283–291.

[9] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[10] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[11] G. Konidaris, S. Osentoski, and P. Thomas, “Value function approxima-
tion in reinforcement learning using the Fourier basis,” in Proceedings
of the 25th Conference on Artificial Intelligence, August 2011, pp. 380–
385.

[12] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The
Journal of Machine Learning Research (JMLR), vol. 4, pp. 1107–1149,
2003.

[13] M. Lee and C. W. Andersno, “Relevance vector sampling for reinforce-
ment learning in continuous action space,” in 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2016, (to
appear).

[14] ——, “Robust reinforcement learning with relevance vector machines,”
in Robotics: Science and Systems (RSS) Workshop on Robot Learning
and Planning, 2016.

[15] M. Lee and C. W. Anderson, “Convergent reinforcement learning control
with neural networks and continuous action search,” in Proceedings of
IEEE Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL), 2014.

[16] R. Linsker, “Perceptual neural organization: some approaches based on
network models and information theory,” Annual review of Neuroscience,
vol. 13, no. 1, pp. 257–281, 1990.

[17] M. G. Madden and T. Howley, “Transfer of experience between rein-
forcement learning environments with progressive difficulty,” Artificial
Intelligence Review, vol. 21, no. 3, pp. 375–398, 2004.

[18] S. Mahadevan and M. Maggioni, “Proto-value functions: A laplacian
framework for learning representation and control in markov decision
processes.” The Journal of Machine Learning Research (JMLR), vol. 8,
no. 2169-2231, p. 16, 2007.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
02 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[20] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural networks, vol. 6, no. 4, pp. 525–533, 1993.

[21] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: transfer learning from unlabeled data,” in Proceedings of the
24th International Conference on Machine Learning (ICML), 2007, pp.
759–766.

[22] R. Raina, A. Y. Ng, and D. Koller, “Constructing informative priors using
transfer learning,” in Proceedings of the 23rd international Conference
on Machine learning (ICML), 2006, pp. 713–720.

[23] I. Rexakis and M. G. Lagoudakis, “Directed policy search using rele-
vance vector machines,” in 2012 IEEE 24th International Conference
on Tools with Artificial Intelligence (ICTAI), vol. 1, 2012, pp. 25–32.

[24] M. Riedmiller, “Neural fitted q iteration–first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:
ECML 2005, 2005, pp. 317–328.

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[26] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1998.

[28] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforcement
learning,” in Proceedings of the 24th international conference on Ma-
chine learning, 2007, pp. 879–886.

[29] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” The Journal of Machine Learning Research (JMLR), vol. 1,
pp. 211–244, 2001.

[30] M. E. Tipping, A. C. Faul et al., “Fast marginal likelihood maximisation
for sparse bayesian models,” in Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, vol. 1, no. 3, 2003.

[31] L. Torrey, J. Shavlik, T. Walker, and R. Maclin, “Relational skill transfer
via advice taking,” in ICML Workshop on Structural Knowledge Transfer
for Machine Learning, 2006.

[32] L. Torrey, T. Walker, J. Shavlik, and R. Maclin, “Using advice to transfer
knowledge acquired in one reinforcement learning task to another,” in
Machine Learning: ECML 2005, 2005, pp. 412–424.

[33] D. Wipf, J. Palmer, and B. Rao, “Perspectives on sparse bayesian
learning,” in Advances in Neural Information Processing Systems 16,
2003.

[34] P. Wu and T. G. Dietterich, “Improving svm accuracy by training on
auxiliary data sources,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 110.

[35] V. W. Zheng, S. J. Pan, Q. Yang, and J. J. Pan, “Transferring multi-device
localization models using latent multi-task learning.” in Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI), vol. 8, 2008,
pp. 1427–1432.


