
Research Article

Continuous reinforcement learning
to adapt multi-objective optimization
online for robot motion

Kai Zhang1,2 , Sterling McLeod2, Minwoo Lee2 and Jing Xiao2,3

Abstract
This article introduces a continuous reinforcement learning framework to enable online adaptation of multi-
objective optimization functions for guiding a mobile robot to move in changing dynamic environments. The
robot with this framework can continuously learn from multiple or changing environments where it encounters
different numbers of obstacles moving in unknown ways at different times. Using both planned trajectories from
a real-time motion planner and already executed trajectories as feedback observations, our reinforcement
learning agent enables the robot to adapt motion behaviors to environmental changes. The agent contains a
Q network connected to a long short-term memory network. The proposed framework is tested in both
simulations and real robot experiments over various, dynamically varied task environments. The results show the
efficacy of online continuous reinforcement learning for quick adaption to different, unknown, and dynamic
environments.

Keywords
Mobile robots, motion planning, reinforcement learning

Date received: 18 November 2019; accepted: 26 January 2020

Topic: Mobile Robots and Multi-Robot Systems
Topic Editor: Nak-Young Chong
Associate Editor: Changjoo Nam

Introduction

Real-time motion planning of robots often needs to con-

sider multiple and sometimes conflicting optimization cri-

teria, such as time efficiency (in terms of the shortest

distance or time), safety (in terms of the clearance to obsta-

cles), and energy efficiency.1–3 A common practice is to

combine these criteria in a cost function as a weighted sum.

However, determining proper values for the coefficients in

the cost function is not a trivial issue but often done manu-

ally in an ad hoc manner. It is difficult to determine the

coefficient values of a combined optimization function

before having the robot perform in an environment (i.e. all

the set values may not be optimal). Moreover, when the

task environment changes, the previously set coefficient

values may not be suitable anymore.

Hence, there are two related open problems: (1) how to

determine values for coefficients of a compound optimiza-

tion function automatically and (2) how to make the coeffi-

cients self-adapt to environmental changes. There is little

work on both problems. Ishigami et al.4 tried to generate

1School of Automation, Beijing Institute of Technology, Beijing, China
2 Department of Computer Science, University of North Carolina at

Charlotte, Charlotte, NC, USA
3Department of Computer Science and Robotics Engineering Program,

Worcester Polytechnic Institute, Worcester, MA, USA

Corresponding author:

Kai Zhang, School of Automation, Beijing Institute of Technology, Beijing

100081, China.

Email: kaizhangbit@gmail.com

International Journal of Advanced
Robotic Systems

March-April 2020: 1–14
ª The Author(s) 2020

DOI: 10.1177/1729881420911491
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-0002-2184
https://orcid.org/0000-0002-0002-2184
mailto:kaizhangbit@gmail.com
https://doi.org/10.1177/1729881420911491
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420911491&domain=pdf&date_stamp=2020-03-24

different paths with different sets of coefficients and eval-

uate theses paths based on a metric, but the values of all

coefficients still need to be set off-line manually. The main

contribution of this article is that we propose to tackle both

problems by continuously training a reinforcement learning

(RL) agent in different environments, even during the test.

The agent is trained to adjust the values of the coefficients

of a multi-objective optimization function based on the

robot’s performance in an environment with unknown

dynamic obstacles, and the agent keeps learning by itself

to best adapt to all kinds of environmental changes con-

tinuously. During the process, the agent becomes more and

more knowledgeable and better and better at learning.

Specifically, we introduce a continuous RL agent that

leverages motion planning results and can accommodate

real-time robot motion planning methods. The observa-

tions of the agent are motion trajectories, whose dimen-

sion is far lower than the dimension of raw sensor data

(such as the image of a camera) that is often used in end-

to-end learning. Therefore, a convolutional neural net-

work (NN) that is used to extract observation features can

be removed from the agent. This simplifies the formula-

tion of the agent and enables continuous learning. Learn-

ing continuously means that5–7 the agent can accumulate

the knowledge learned in the past environments to help

future learning and problem-solving and that later learn-

ing does not degrade much its performance in task envir-

onments learned earlier.

Related work

Lifelong or continuous learning has been a long-standing

challenge for machine learning and autonomous systems.8–10

Mimicking humans and animals that continuously acquire

new knowledge and transfer them to new tasks throughout

their lifetime, continuous learning builds an adaptive system

that is capable of learning from a continuous stream of

information. However, dilemma between plasticity and

catastrophic forgetting11,12 is the main challenge due to

inefficiency and poor performances when relearning from

scratch for new tasks.6 Thus, accommodation of new

knowledge while not forgetting or interfering current

learning process requires a sophisticated approach to con-

solidate knowledge. Memorizing past experiences13–15 or

allocating NN resources dynamically16,17 has been intro-

duced to alleviate the forgetting problems. Replaying pre-

vious experiences18,19 improves learning efficiency by

reducing sequential dependence of data and forgetfulness

of important experiences, but experience replay only does

not provide enough self-adaptability to dynamically

changing environments.

Acknowledging the impossibility of providing all the

prior knowledge to perform well in the real-world, contin-

uous learning models has been emerged for robots. One aim

of the continuous learning is to train an agent that can

quickly adapt to new tasks (e.g. changing navigation goals

or environments). A hierarchical Bayesian model20 has

been used to transfer the knowledge learned between dif-

ferent but related tasks. Actor-Mimic21 conducts the train-

ing over related source tasks, but the generalization to new

target tasks needs a sufficient level of similarity between

the source and the target tasks. Zhang et al.22 employ the

conception of successor factors into RL. Besides, universal

value function approximators (UVFAs)23 propose to handle

different goals in one environment by incorporating the

goal into the input of the value function. The generalization

ability of navigating new tasks can also be achieved by

combining RL with conventional motion planning meth-

ods.24,25 However, the above method can only transfer the

learned knowledge to new tasks just slightly changed from

the training tasks, for example, removing or adding one or

two static obstacle(s) in the test environment.

A few researchers consider transferring the trained agent

to totally different environments with only static or moving

obstacles. For example, one method called reinforcement

planning26 extends RL to automatically learn cost functions

for search-based planners such as A* and Dijkstra’s algo-

rithm. The method successfully transfers the trained agent

to some new static environments without moving obstacles,

but it lacks the ability to improve the performance continu-

ously as the learning progresses in different, dynamically

changing environments. Everett et al.27 use a long short-

term memory (LSTM) network to handle an arbitrary num-

ber of obstacles, but there are only moving obstacles and

the number of moving obstacles is fixed in each environ-

ment. There is little research on solutions that can continu-

ously train an RL agent with feedback to adapt the robot

motion to changing mixed environments, where there are a

variable number of static and moving obstacles. This leads

us to propose a continuous, incremental knowledge acqui-

sition model, which is essential for a lifelong learning robot

that does not lose important knowledge obtained through a

motion planner.

Overview of the framework

The proposed framework is illustrated in Figure 1. There

are two closed loops: one is among a real-time motion

planner, a robot, and an environment and the other one

is between the real-time motion planner and an RL agent.

In the first closed loop, the real-time motion planner inter-

acts with the task environment based on sensing and gen-

erates the best motion trajectory according to the current

multi-objective cost function for the robot to execute.

Here, the “coefficients” are used in the linear combination

in the cost function. In the second closed loop, an RL

agent develops proper coefficients for the multi-

objective cost function to maximize the desired perfor-

mance in real-time motion planning.

The RL agent has three NNs: an LSTM NN, an online

NN,28 and a target NN. The three networks can be classi-

fied in two parts. One includes the LSTM network, which is

2 International Journal of Advanced Robotic Systems

used to preprocess the motion trajectories. This will be

described in detail in “Observation” section. The other

includes the online network and the target network, which

are used for RL. The online network is continuously trained

based on the continuous observation, reward, and loss cal-

culated using the target value from the target network. The

target network is created by copying the online network

during initialization. During training, only the online net-

work is trained, and then its weights are copied to the target

network periodically. Note that directly implementing RL

with only the online network is unstable, because the net-

work being trained is also used to calculate the target value.

To solve this problem, the separate target network is used to

calculate the target value. The target network can greatly

improve the stability of continuous RL and enable the agent

to continuously build skills on how to adjust the coeffi-

cients to best adapt to environmental changes. If we use

only the online network, the learning is prone to diverge.

Note that the NN weights in RL and the planner’s optimi-

zation function coefficients are different. The former is

trained through backward propagation, and the latter is

tuned by the RL agent.

The proposed framework is validated by a case study

with the real-time adaptive motion planner (RAMP)29,30

and can be easily extended to benefit other real-time

motion planners. The framework has the following

characteristics:

1. The skills learned from the earlier task environ-

ments are accumulated and used to make the learn-

ing in the current task environment more efficient.

2. While the robot benefits from the learned skills pro-

vided by the learning agent to perform and adapt

well in constantly changing environments, the

learning agent itself is trained continuously through

the online network to improve its own performance.

3. The proposed framework is general and abstract

and, hence, is independent of real-time motion plan-

ners, platforms, and task environments.

4. The agent does not learn specific coefficients but

learns a mapping from motion trajectories to coeffi-

cient changes. This enables the robot to adapt to

different numbers of obstacles moving in unknown

ways during the navigation.

5. The learned skills can be transferred to different

types of task environments and motion planning

objectives and from a simulated world to the real

world.

6. By using motion trajectories as feedback observa-

tions, the formulation of the RL agent is greatly

simplified. This makes continuous training much

more efficient and hence effective.

7. The learned optimization coefficients have clear

meanings, so the resulting robot performance is

understandable. This feature allows us to analyze

the relationship between robot motions and coeffi-

cient changes.

The rest of this article is organized as follows. The

fourth section describes our RL strategy. The fifth section

provides a case study with RAMP as the motion planner.

The sixth section provides and discusses the training and

test results in both simulations and real robot experiments.

The last section concludes the article.

RL-based coefficient determination

In this section, we will introduce the method of continu-

ously training the RL agent in the proposed framework.

Generally, the agent with discrete action space provides

better stability than that with continuous action space, so

we use Q networks to adjust the coefficients discretely. The

input of the Q networks must have fixed length, but the

Figure 1. Continuous RL with motion planning. RL: reinforcement learning.

Zhang et al. 3

observation input contains a hybrid trajectory with variable

length. Therefore, we use an LSTM network to encode the

information of the hybrid trajectory into a fixed-length

representation.

Besides, when NNs are used in RL, the samples are

assumed to be independently and identically distributed.

However, when the samples are generated from exploring

in an environment sequentially, this assumption doesn’t

hold. Therefore, to minimize correlations between samples,

the agent is trained off-policy with samples from a replay

buffer. Using replay buffer may slow learning, but in prac-

tice we found that this is greatly outweighed by the stability

of learning.

Observation

An observation is the input of the RL agent, but it does not

contain environmental information. First, we are interested

in an agent being able to handle different goals, so we

follow the approach from UVFA,23 that is, the observation

includes the navigation goal ~g . Second, the observation

should include the hybrid trajectory that is the real trajec-

tory concatenated with the planned trajectory from a

motion planner, because the real trajectory and the planned

trajectory capture the information of the robot motion state

and the surrounding environment, such as the positions of

obstacles. Two examples of hybrid trajectories are shown

in Figure 2. The switching of tracked trajectories occurs at

the points with numeric marks. In Figure 2(a), the robot is

going to follow trajectory 0-B. In Figure 2(b), the robot has

arrived at point 1, and the robot’s real trajectory is 0-A0-1,

which is different from 0-A-1 due to robot model and

motion uncertainty. In Figure 2(c), the robot switches to a

new planned trajectory 1-D. In summary, here the hybrid

trajectories are 0-A0-1-B and 1-C0-2-D, which are the real

trajectories (0-A0-1 and 1-C0-2) concatenated with the

unexecuted part (1-B and 2-D) of the planned trajectories.

We use ~g to represent the navigation goal and tðtÞ to

represent the hybrid trajectory at a time instant t. A naviga-

tion goal is defined as~g ¼ xg; yg; �g

� �
, and a trajectory is a

sequence of robot motion states. A robot motion state is a

collection of a robot pose, a velocity, and an acceleration

with a time stamp. The kth motion state in a trajectory is

defined as ~sk ¼ x; y; �; _x; _y; _�;€x;€y; €�; tk

� �
, where x and y

are the position coordinates, � is the orientation, and tk
is the time stamp of ~sk . Therefore, we have tðtÞ ¼
~s0;~s1; � � � ;~sKð Þ, where K is the number of motion states

in tðtÞ.
Note that K is not a constant. Thus, an LSTM NN is used

to transfer the variable-length trajectory (tðtÞ) into a fixed-

length vector (~hK) that contains relevant information of all

motion states, as in handling the varying number of obsta-

cles with LSTM.27 As shown in Figure 3, the pertinent

information of each motion state in tðtÞ is stored in the cell

state~ck , which is the “memory” of the LSTM network. The

cell state acts like a conveyor belt that transfers relative

information all the way down the chain. The cell also out-

puts a hidden state ~hk based on the current cell state. In

mathematical terms, the forward propagation of the LSTM

network can be formulated as

~f k ¼ s W f � ~hk�1jj~sk

h i
þ~bf

� �
~ik ¼ s W i � ~hk�1jj~sk

h i
þ~bi

� �
~ck ¼~f k �~ck�1 þ~ik � tanh W c � ~hk�1jj~sk

h i
þ~bc

� �
~ok ¼ s W o � ~hk�1jj~sk

h i
þ~bo

� �
~hk ¼~ok � tanh ~ckð Þ

ð1Þ

where s is the sigmoid function, and Wf, Wi, Wc, Wo and~bf ,

~bi,~bc,~bo are the weight matrices and the bias vector para-

meters. The operators jj and � denote the concatenation and

the Hadamard product.

The LSTM network has the ability to add relevant infor-

mation of motion states to the cell state. Hence, the final

hidden state ~hK captures the relevant information of all

Figure 2. Examples of hybrid trajectories: (a) planned trajectory
0-B, (b) hybrid trajectory 0-A0-1-B, (c) switching to planned tra-
jectory 1-D, and (d) hybrid trajectory 1-C0-2-D.

4 International Journal of Advanced Robotic Systems

motion states in tðtÞ. The vector~hK has a fixed length and

is concatenated with~g to form a new vector~vg, and then~vg

is fed to a Q network with three fully connected layers. The

outputs are the Q values for all possible actions. ~a is an

action vector, which will be introduced in the next section.

The learning rate is set to 0.005 initially and reduced to

0.0005 through exponential decay, and other parameters of

the LSTM network and the Q network are presented in

Table 1.

The best action is selected by the e-greedy strategy,

where e is the ratio of exploration. At the beginning of

learning, we know little about the environment, so we must

do more exploration by setting e to a big value. After the

network is trained for some time, we know a lot about the

environment, so we can do more exploitation by setting e to

a small value. In a new environment, our e is set to 0.5 at

the beginning of learning and reduced to 0.1 through expo-

nential decay when the network has been trained for 30

episodes in this environment.

Action

Now suppose we have n coefficients W1, W2, � � �, Wn that

need to be adjusted, which come from the same multi-

objective cost function. Note that we are only interested

in the relative costs of different candidate trajectories, so

coefficient vectors W 1 ¼ 1;W 2 ¼ 1; � � � ;W n ¼ 1ð Þ and

W 1 ¼ 2;W 2 ¼ 2; � � � ;W n ¼ 2ð Þ are equivalent for the cost

function. The degree of freedom (DOF) of coefficient

vector W 1;W 2; � � � ;W nð Þ is only n� 1. Therefore, an

action is represented as an n� 1 dimensional vector

~a ¼ dW 2
; dW 3

; � � � ; dW n
ð Þ that changes the vector

ðW 2;W 3; � � � ;W nÞ. Since the action space of the Q network

is discrete, the coefficients must be changed discretely at a

fixed step dW (dW 2
; dW 3

; � � � ; dW n
2 f�dW ; 0; dWg). In

other words, each coefficient can be increased or decreased

by dW or remain unchanged at a time. The total number of

possible actions is N act¼ 3n�1. If the selected real-time

motion planner has multiple optimization criteria whose

coefficients need to be adjusted, one of the coefficients can

be set to 1.0 and, hence, can reduce one DOF. Other coeffi-

cients are adjusted independently.

Reward

An RL agent should learn from performance-driven feed-

back. This feedback can be modeled as a simple delayed

reward function used in the training process, such as the

time to reach a goal location or the number of collisions.

Our reward r is calculated to evaluate the robot’s perfor-

mance as follows:

r ¼
Ra þ T m � tað Þ if at the goal region

�1to � I c � T p if not at the goal region

�
ð2Þ

where

I c ¼
1 if the robot has collided with obstacles

0 if the robot has not collided with obstacles

�

and the constant T m is the time limit to move from the start

location to the goal region. The constant Ra > 0 is a fixed

reward for arriving at the goal region within T m. The vari-

able ta is the actual execution time to the goal region. The

variable to is the estimated time until a collision when

moving along the current best trajectory. to is þ1 if no

collision is predicted. Considering this internally estimated

collision time in the reward function can make the robot

learn to move at a certain distance from obstacles, because

the feedback information about obstacles can be returned

before the robot really collides with obstacles. This feature

is a superiority of the proposed framework. The constant T p

is the time penalty when a collision occurs in simulation or

a forced stop of the robot occurs in real experiments (to

avoid actual collisions). By increasing the cumulative

Figure 3. The architecture of the LSTM Q network. LSTM: long short-term memory.

Table 1. Parameters of LSTM network and Q network.

Parameter Value

Input channels 10
Hidden layers of LSTM 1
Hidden (output) size of LSTM 20
Hidden layers of Q network 3
Hidden size of Q network 32
Activation function of hidden layer ReLU
Output channels 9
Dropout probability 0.4
Each batch’s samples 64
Steps of target network 500

LSTM: long short-term memory.

Zhang et al. 5

reward over time, the robot will try to arrive at the goal

region as soon as possible while avoiding collisions. Each

training episode will keep going until the robot arrives at

the goal region or T m is reached.

According to equation (2), the agent can only receive a

positive reward when it succeeds in arriving at the goal

region within the time limit T m. This feature often reduces

the stability and the efficiency of the training. We address

this problem by following the approach from Hindsight

Experience Replay.31 For the failed navigation, we can

double the training samples in replay buffer with disguised

successful case, that is, each transition is stored in the

replay buffer twice: once with the navigation goal at which

the robot failed to arrive within T m and once with the goal

corresponding to the motion state of the robot at time

instant T m.

Updating of weights in NNs

There are totally three NNs in our RL agent: the LSTM

network, the online network, and the target network. The

weights of the online network and the LSTM network are

updated by the backward propagation of the error e, and the

weights of the target network are copied from the weights

of the online network periodically. The interval (or number

of steps) for this copying is a hyper-parameter, which is

determined by a pilot test in the simulation. The error e is

e ¼ y� Qð~S ;~aÞ ð3Þ

where

y ¼
r if at the goal region

r þ g � max~a 0Q
0ð~S 0;~a 0Þ if not at the goal region

(

and ~a is the action vector used to change the coefficients.

~S ¼ t tð Þ;~gð Þ is the current observation and ~S
0

is the next

observation after applying~a. r is the current reward and g is

the discounting factor. Note that Q ~S ;~a
� �

is calculated using

the online network, and Q 0 ~S
0
;~a 0

� �
is calculated using the

target network. The backward propagation of e in the online

network and the LSTM network are well-known and, hence,

are omitted in this article for brevity.19,32 The weights of the

LSTM network are updated to learn how to transfer a

variable-length trajectory into a fixed-length vector. The

weights of the target network are updated to learn how to

adjust the coefficients of a multi-objective cost function in a

real-time motion planner, and the weights of the online net-

work are updated to enable the agent to keep learning from

different kinds of environments continuously.

Case study

In this case study, we use the RAMP as a selected motion

planner module in the proposed continuous RL framework.

We will first review RAMP and then introduce how to

utilize it in the proposed framework.

Overview of RAMP

RAMP enables the simultaneous planning and control in

dynamic environments. RAMP always maintains multiple

trajectories called a population through a trajectory gen-

erator. At the start of each control cycle, the lowest cost

trajectory in the population is selected as the best trajectory.

Trajectory costs are calculated through a trajectory evalua-

tor. While the robot moves along the current best trajectory,

RAMP keeps modifying the population based on the latest

sensing information. The above process continues until the

robot reaches the goal. There are both feasible (collision-

free) and infeasible (not collision-free) trajectories in the

population. Sometimes the robot has to follow an infeasible

trajectory when there is no feasible one, and the robot will

stop if a collision will occur within a short time threshold,

called imminent collision. While the robot is stopped,

RAMP continues to modify the population until (1) it finds

a better trajectory for the robot to switch to or (2) the

obstacle causing the imminent collision moves away.

RAMP uses different cost functions to evaluate feasible

and infeasible trajectories. The cost functions for feasible

trajectories and infeasible trajectories are shown in equa-

tions (4) and (5), respectively.

C feasible ¼ W T �
T

N T

þW A �
A

N A

þW D �
1D

N D

ð4Þ

C infeasible ¼ W T c
� T c

N T c

þW Ac
� Ac

NAc

ð5Þ

where T, A, and D are the estimated execution time, the

orientation change, and the distance to the nearest obstacle

of the feasible trajectory, respectively, and T c and Ac are

the estimated time until a collision and the orientation

change of the infeasible trajectory. They have the corre-

sponding coefficients W T, W A, W D, W T c
, and W Ac

and the

normalization factors N T, N A, N D, NT c
, and NAc

. Note that

the cost for any feasible trajectory is lower than that for any

infeasible trajectory. In this case study, W T is set to 1.0, and

W A and W D are adjusted by RL. W T c
and W Ac

are set to

some fixed human-tuned values.

Continuous RL with RAMP

The continuous RL framework after utilizing RAMP is

shown in Figure 4. Here, the target NN is hidden for clarity.

In Figure 4, the best trajectory generated by RAMP is rep-

resented as tb. The real trajectory of the mobile robot is

represented as t r. The hybrid trajectory (tb concatenated

with t r) is represented as t (the operator jj denotes the

concatenation). The goal location is represented as ~g . At

the end of each control cycle, the hybrid trajectory is

stacked in the replay buffer. Then, the LSTM network takes

6 International Journal of Advanced Robotic Systems

a hybrid trajectory from the replay buffer through sampling

and encodes the motion states of the hybrid trajectory into a

fixed-length vector. This vector is concatenated with the

goal vector to form a new vector, which is fed to the Q

network. At last, the Q network outputs the coefficient

changes back to RAMP.

Results

In this section, we present both the simulation and the real

experimental results from the above case study with

RAMP.

Simulation experiments

The simulations are conducted on the Gazebo simulator

using a four-core i5 2.4 GHz CPU. The Gazebo simulator

uses a physical engine. The robot in the simulator needs to

receive control commands (linear and angular velocities)

and respond to the commands under the constraints of the

physical engine, so there are control errors even in simula-

tions. The moving obstacles in the simulations are able to

move in different ways. The trajectories of all moving obsta-

cles are unknown to the robot. Only the instant positions and

orientations of moving obstacles are sent to the robot as

sensed results at a fixed frequency. The size of one simula-

tion environment is 6 � 6 m2. In the other simulation envir-

onments, there are working zones bounded by black

rectangles and outside walls. The sizes of the working zones

are 6� 6 m2, and the sizes of the outside walls are 8� 8 m2.

Training. The training environments are shown in Figure 5

(called Tr. A : Tr. D). There are both static obstacles (red

barrels) and moving obstacles (blue cars) in the environ-

ments. Note that in Tr. D, the static obstacles are dumpsters

with black tops, which are bigger than the red barrels. The

moving obstacles in Tr. D are also bigger than those in

other training environments. All moving obstacles move

randomly. Specifically, in every 100 ms, each moving

obstacle rotates at a random angular velocity for 20 ms and

then advances at a random linear velocity for 80 ms. The

ranges of the random angular and linear velocities are

approximately 0.3–0.6 rad/s and 1.0–1.4 m/s, respectively.

Besides, there are doors that randomly switch or close at

different time in Tr. A and Tr. C. In the experiments, we

call that the robot completes one episode when it arrives at

the goal from the start. The start and the goal of the robot

are marked by “1” and “2”, respectively. The working zone

of the robot is bounded by a black square. Outside the

working zone, there are four walls, by which the motions

of moving obstacles are restricted. The robot guided by the

motion planner can only run in the working zone, but the

moving obstacles can move in or outside the working zone.

Therefore, the robot works with different numbers of mov-

ing obstacles in one environment at different times. For

example, now in Tr. C, there are five moving obstacles in

the working zone and three moving obstacles outside the

working zone.

The RL agent was trained for two rounds. In each round,

the agent was trained in Tr. A, Tr. B, Tr. C, and Tr. D,

sequentially. In each training environment, we trained the

agent for 50 episodes and then switched to the next envi-

ronment. Recall that the coefficients are changed by a fixed

step dW, and the target NN is updated every T u control

cycles. We used different values of dW and T u to train the

agent, and the results are shown in Tables 2 to 5. According

to the results, we obtained the best training performance

under the setting of dW ¼ 0:05 and T u ¼ 300, so this set-

ting was used in the following simulations.

The curves of the execution time, the number of colli-

sions, the number of coefficient changes, and the loss dur-

ing the training process are shown in Figure 6. They were

filtered by the moving average with a window size of 10.

The points marked by “Tr. A, Tr. B, . . . ” mean that the

training was switched to the corresponding environments.

We use a value called ne to measure the skill that the agent

has learned, as shown in Table 6. At the start of the training,

the agent could not converge (the execution time was still

decreasing when we switch the training). After the agent

was trained in more environments, it starts learning with a

shorter initial execution time and converges faster. This

means our agent was learning continuously to optimize its

performance in different types of task environments.

Test. To illustrate the generalization ability of the trained

agent, we tested the agent trained with dW ¼ 0:05 and

T u ¼ 300 in both the training environments and some pre-

viously unseen environments that were not used in the

training. Note that our agent is a continuous RL model,

so even in the test time, the weights of the trained NNs

would be still updated. We compared the performance of

this continuous learning agent with that of the fixed human-

tuned coefficients and the performance of a noncontinuous

learning agent. The noncontinuous learning agent was

trained in the same way as the continuous one, but its NN

would be fixed during the test time (it still changes the

Figure 4. Case study with RAMP. RAMP: real-time adaptive
motion planner.

Zhang et al. 7

Figure 5. The training environments (note that the blue cars are unpredictable moving obstacles): (a) Tr. A, (b) Tr. B, (c) Tr. C, and
(d) Tr. D.

Table 2. The average execution time (s) with the standard deviation using different dW and Tu.

Tu

dW 0.03 0.05 0.07 0.09 0.11

50 40.1 + 1.93 39.8 + 1.88 41.5 + 2.87 42.6 + 3.22 43.3 + 3.52
150 38.6 + 1.78 38.2 + 1.74 39.1 + 1.89 40.3 + 2.34 41.1 + 2.95
300 37.1 + 1.44 36.7 + 1.37 37.3 + 1.56 38.5 + 1.85 39.9 + 1.97
450 37.9 + 1.53 37.5 + 1.49 38.3 + 1.75 39.1 + 1.91 40.7 + 2.26
550 39.2 + 1.81 38.3 + 1.75 40.6 + 1.99 41.5 + 2.62 42.3 + 3.36

Boldface values are used to highlight the maximal or minimal values in the corresponding table.

Table 3. The average # collisions with the standard deviation using different dW and Tu.

Tu

dW 0.03 0.05 0.07 0.09 0.11

50 3.36 + 1.02 3.24 + 0.96 3.57 + 1.17 3.72 + 1.31 3.96 + 1.41
150 2.22 + 0.78 2.16 + 0.75 2.36 + 0.89 2.54 + 0.92 2.82 + 1.05
300 1.54 + 0.47 1.02 + 0.31 1.71 + 0.53 1.93 + 0.69 2.48 + 0.96
450 1.95 + 0.68 1.78 + 0.56 2.24 + 0.81 2.46 + 0.84 2.67 + 0.95
550 2.86 + 0.93 2.32 + 0.87 3.06 + 0.88 3.38 + 1.07 3.52 + 1.12

Boldface values are used to highlight the maximal or minimal values in the corresponding table.

Table 4. The 95% confidence interval of execution time (s) using different dW and Tu.

Tu

dW 0.03 0.05 0.07 0.09 0.11

50 [39.91, 40.29] [39.62, 39.98] [41.22, 41.78] [42.28, 42.92] [42.96, 43.64]
150 [38.43, 38.77] [38.03, 38.37] [38.91, 39.29] [40.07, 40.53] [40.81, 41.39]
300 [36.96, 37.24] [36.57, 36.83] [37.15, 37.45] [38.32, 38.68] [39.71, 40.09]
450 [37.75, 38.05] [37.35, 37.65] [38.13, 38.47] [38.91, 39.29] [40.48, 40.92]
550 [39.02, 39.38] [38.13, 38.47] [40.40, 40.80] [41.24, 41.76] [41.97, 42.63]

Boldface values are used to highlight the maximal or minimal values in the corresponding table.

8 International Journal of Advanced Robotic Systems

coefficients dynamically). Figure 7 shows the new test

environments.

1. In Te. A, the walls and the doors in the working

zone are placed along the diagonal.

2. In Te. B, there is an area similar to a maze in the

upper half of the working zone. It is less cluttered

than the training environments, but the distance

from the start to the goal is longer.

3. In Te. C, the working zone is directly bounded by

walls. Both the robot and the moving obstacles can

only move within the working zone, so that the

robot will always work with 10 moving obstacles

in this environment.

The test results are shown in Figure 8 and Tables 7 and

8. The performance measurements are the same as those in

the training. We found that both the continuous learning

agent and the noncontinuous learning agent outperformed

the fixed human-tuned coefficients. Furthermore, the con-

tinuous learning agent significantly improves the perfor-

mance of noncontinuous agent (p� 0:05 from analysis

Table 5. The 95% confidence interval of # collisions using different dW and Tu.

Tu

dW 0.03 0.05 0.07 0.09 0.11

50 [3.26, 3.46] [3.15, 3.33] [3.47, 3.69] [3.59, 3.85] [3.82, 4.10]
150 [2.14, 2.30] [2.09, 2.23] [2.27, 2.45] [2.45, 2.63] [2.72, 2.92]
300 [1.49, 1.59] [0.99, 1.05] [1.67, 1.77] [1.87, 2.01] [2.39, 2.57]
450 [1.87, 2.01] [1.73, 1.83] [2.16, 2.32] [2.38, 2.54] [2.55, 2.73]
550 [2.77, 2.95] [2.23, 2.41] [2.97, 3.15] [3.28, 3.48] [3.41, 3.63]

Boldface values are used to highlight the maximal or minimal values in the corresponding table.

Figure 6. (a to d) The training results under the setting of dW ¼ 0:05 and Tu ¼ 300.

Table 6. The maximum continuous number of episodes in which
the shortest execution time has not become better in the training
(denoted by ne).

Round 1 2

Environment Tr. A Tr. B Tr. C Tr. D Tr. A Tr. B Tr. C Tr. D
ne 5 9 15 26 31 33 42 41

Zhang et al. 9

of variance tests). The improvements are not only the

reduced average navigation time to the goal but, more

importantly, the significantly reduced average number of

collisions during the navigation. Besides, the results have

shown that our approach naturally transfers the knowledge

learned in the training environments to completely differ-

ent new environments. The differences can be the numbers

of static and unknown moving obstacles or the structures of

environments.

Figure 9 shows the curves of the coefficients tuned by

the continuous learning agent and the snapshots at three

different time instants during one of the test episodes in

Te. B. The corresponding places of the snapshots in Te.

B are marked in Figure 7(b) to (d). The horizontal “plan

number” means the number of planning cycles. At the

start of the test episode, the values of the coefficients are

set randomly. In snapshot (b), mixed static and dynamic

obstacles are being dealt with. In this case, drastic orien-

tation changes can easily result in collisions, and there is

no space for the robot to keep far away from the obsta-

cles. Hence, the penalties for the orientation change

W Að Þ are increased with the decreased penalty for the

distance to obstacles W Dð Þ. In snapshot (c), the robot is

navigating a maze-like area, where keeping away from

the wall is the key to ensuring safety, and frequent turn-

ings are necessary to pass through the maze. Therefore,

the penalty for the distance to obstacles is increased and

the penalties for the orientation change are decreased. In

snapshot (d), the robot will arrive at the goal soon. Both

the penalties for the orientation change and the distance

to obstacles are decreased, which means that the impor-

tance of the time efficiency W Tð Þ is increased. The robot

now will move along a trajectory as short as possible to

reach the goal.

Figure 7. The test environments (note that the blue cars are unpredictable moving obstacles): (a) Te. A, (b) Te. B, and (c) Te. C.

Tr. A Tr. B Tr. C Tr. D Te. A Te. B Te. C
34

36

38

40

42

44

46

48

50

52(a)

(b)

(c)

fixed human-tuned coefficients

Tr. A Tr. B Tr. C Tr. D Te. A Te. B Te. C
0
1
2
3
4
5
6
7
8
9

10

Co

lli
si

on
s

fixed human-tuned coefficients

Tr. A Tr. B Tr. C Tr. D Te. A Te. B Te. C
22

24

26

28

30

32

34

36

38

co

effi
ci

en
t c

ha
ng

es

fixed human-tuned coefficients

Figure 8. (a to c) Average test results over 100 episodes.

Table 7. The 95% confidence interval of execution time (s) in the test.

Tr. A Tr. B Tr. C Tr. D Te. A Te. B Te. C

FHC [38.95, 39.85] [41.20, 42.00] [42.84, 43.56] [45.94, 47.06] [44.24, 45.36] [47.77, 48.83] [46.60, 47.60]
NLA [36.25, 36.55] [36.94, 37.26] [37.21, 37.59] [37.63, 37.97] [37.44, 37.76] [40.58, 41.02] [40.98, 41.42]
CLA [35.32, 35.48] [35.30, 35.50] [36.12, 36.28] [36.62, 36.78] [36.16, 36.44] [39.07, 39.33] [39.32, 39.68]

FHC: fixed human-tuned coefficients; NLA: noncontinuous learning agent; CLA: continuous learning agent.
Boldface values are used to highlight the maximal or minimal values in the corresponding table.

10 International Journal of Advanced Robotic Systems

Moreover, from the results we can tell that in the same

environment, when using the RL agent to tune the coeffi-

cients of cost functions online, more frequent coefficient

changes often result in more efficient and safer navigation.

The frequency depends largely on the changes of the envi-

ronment during navigation, such as the number of moving

obstacles. For example, the number of moving obstacles in

Te. C remains fixed all the time, so the number of coeffi-

cient changes needed in this environment is smaller than

that in the other environments, even though the environ-

ment itself is cluttered. Note that if the number of the

moving obstacles in the working zone is fixed and the

obstacles move along fixed trajectories, the coefficients

Table 8. The 95% confidence interval of # collisions in the test.

Tr. A Tr. B Tr. C Tr. D Te. A Te. B Te. C

FHC [3.94, 4.42] [4.22, 4.62] [4.03, 4.41] [5.88, 6.20] [4.87, 5.61] [3.06, 3.70] [6.48, 7.22]
NLA [1.54, 1.72] [1.68, 1.90] [1.70, 1.86] [1.64, 1.82] [1.87, 2.09] [1.71, 1.97] [2.23, 2.49]
CLA [0.38, 0.54] [0.63, 0.79] [0.54, 0.70] [0.61, 0.77] [1.03, 1.21] [0.90, 1.06] [1.00, 1.10]

FHC: fixed human-tuned coefficients; NLA: noncontinuous learning agent; CLA: continuous learning agent.
Boldface values are used to highlight the maximal or minimal values in the corresponding table.

Table 9. Average data with the standard deviation on the real robot experiments.

Initial coefficients Ending coefficients
coefficients

changes
Execution
time (s)

Min. dist. to
obs. (m)

No obstacles WT ¼ 1; WA ¼ 1; WD ¼ 0:5 WT ¼ 1;WA ¼ 1;WD ¼ 0:2 15.8 + 0.39 16.74 + 0.21 N/A
Static only WT ¼ 1; WA ¼ 1; WD ¼ 0:2 WT ¼ 1;WA ¼ 1;WD ¼ 0:35 19.1 + 0.58 25.19 + 0.47 0.42 + 0.03
Mix WT ¼ 1; WA ¼ 1; WD ¼ 0:35 WT ¼ 1; WA ¼ 1;WD ¼ 0:35 20.9 + 0.83 26.44 + 0.76 0.84 + 0.08
Dynamic only WT ¼ 1; WA ¼ 1; WD ¼ 0:35 WT ¼ 1; WA ¼ 1; WD ¼ 0:4 16.3 + 0.72 21.30 + 0.68 0.76 + 0.07

Figure 10. Real robot environments. The dynamic obstacles move on straight lines back and forth repeatedly: (a) only static obstacles,
(b) mixture of static dynamic obstacles, and (c) only dynamic obstacles.

Figure 11. The values of the coefficients while the real robot is
navigating environments. The vertical lines show when the robot
begins a new environment.

Figure 9. (a) Curves of coefficients and (b to d) snapshots during one of the test episodes in Te. B in the simulation (note that the blue
cars are unpredictable moving obstacles).

Zhang et al. 11

in the cost function will converge after training for some

time. This means that the number of coefficient changes in

such environments will be nearly zero after convergence,

because both the number and the motion pattern of the

obstacles become unchanged.

Real robot experiments

Real robot experiments were performed with a Turtlebot

2 platform. The experiments were ran on a sequence of

3.5 m2 environments. As the robot traversed the environ-

ment, the continuous learning agent modified the coeffi-

cients at real-time until the robot reached the goal. For each

subsequent environment, the initial coefficients were set to

the final coefficients when the robot reached the goal in the

previous environment.

The first environment contains no obstacles. The robot

is easily able to move on a straight line to the goal. The

second environment contains four static obstacles. The

third environment contains two static obstacles and one

dynamic obstacle moving on a straight line back and forth.

The fourth environment contains two dynamic obstacles

that move on straight line trajectories repeatedly and no

static obstacles. An image for each environment containing

obstacles is shown in Figure 10.

Figure 11 shows how the coefficients change over time,

while the robot is executing motion. In general, the W D

coefficient (minimum distance to obstacles) changes sig-

nificantly and often, but the W A coefficient (orientation

change) changes only slightly. While moving in the pres-

ence of no obstacles, the W D coefficient decreases rapidly.

For each new environment, the W D coefficient changes

significantly throughout the run. The fluctuation of the

W D coefficient is likely due to the robot having to perform

more obstacle avoidance behavior while navigating obsta-

cles, and then requiring less obstacle avoidance after it

passes obstacles and approaches the goal.

Comparing the results shown in Tables 9 and 10, under

the RL agent, and in Tables 11 and 12, under manually

tuned coefficient values, it is clear that the reinforcement

agent results in more efficient and less conservative robot

motion in the environment with static obstacles and safer

motion in the environment with dynamic obstacles. Note

that the RL agent was trained entirely in simulation and

with different environments. No further training of the

agent was done before running it in the real experiments.

The purpose of this is to verify the agent’s ability of trans-

ferring the knowledge learned in the simulations to the real

world. With further training of the agent in real experi-

ments, we expect that the robot will have better

performances.

Conclusions

We have introduced a utility-based multi-objective contin-

uous learning framework utilizing a real-time motion plan-

ner to make a robot continuously learn how to adapt online

multi-objective optimization for robot motion. We focus on

improving and testing our framework for continued learn-

ing and adaptation in changing dynamic environments.

Moreover, by the simultaneous robot motion and continu-

ous coefficient-update model learning, our framework

enables the robot to self-tune its behavior online to con-

stantly adapt to unknown changes in task environments

with ever improved performance. The effectiveness and

practicality of the proposed framework have been demon-

strated by a case study with the RAMP, through both the

simulations and the real robot experiments in various

dynamic environments. In comparison with the human-

tuned coefficients, the proposed framework improved the

execution time about 17% on average in the simulations

and 10% on average in the real robot experiments. The

encouraging results verify the performance gain in the

Table 11. Average data with the standard deviation on the real
robot experiments using human-tuned coefficients.

Execution time (s) Min. dist. to obs. (m)

No obstacles 20.76 + 0.77 N/A
Static only 29.80 + 0.84 0.89 + 0.13
Mix 27.05 + 1.53 0.79 + 0.38
Dynamic only 21.81 + 1.38 0.56 + 0.32

Table 10. The 95% confidence interval of data on the real robot experiments

Initial coefficients Ending coefficients
coefficients

changes
Execution
time (s)

Min. dist.
to obs. (m)

No obstacles WT ¼ 1; WA ¼ 1; WD ¼ 0:5 WT ¼ 1;WA ¼ 1;WD ¼ 0:2 [15.72, 15.88] [16.70, 16.78] N/A
Static only WT ¼ 1; WA ¼ 1; WD ¼ 0:2 WT ¼ 1;WA ¼ 1;WD ¼ 0:35 [18.98, 19.22] [25.09, 25.29] [0.41, 0.43]
Mix WT ¼ 1; WA ¼ 1; WD ¼ 0:35 WT ¼ 1; WA ¼ 1;WD ¼ 0:35 [20.73, 21.07] [26.28, 26.60] [0.82, 0.86]
Dynamic only WT ¼ 1; WA ¼ 1; WD ¼ 0:35 WT ¼ 1; WA ¼ 1; WD ¼ 0:4 [16.15, 16.45] [21.16, 21.44] [0.75, 0.77]

Table 12. The 95% confidence interval of data on the real robot
experiments using human-tuned coefficients

Execution time (s) Min. Dist. to Obs. (m)

No obstacles [20.60, 20.92] N/A
Static only [29.63, 29.97] [0.86, 0.92]
Mix [26.74, 27.36] [0.71, 0.87]
Dynamic only [21.53, 22.09] [0.49, 0.63]

12 International Journal of Advanced Robotic Systems

robot navigation from our framework and the transferabil-

ity of the trained agent from training environments to

unseen environments, and even from simulation to real

environments. As such, the trained agent acquires a general

ability for effective navigations in different environments.

The application of the proposed framework is not

restricted to the case study with RAMP shown in this arti-

cle. Our framework can accommodate other real-time

motion planners and enable stability and intelligence for

the robot navigation. In the real-time motion planning prob-

lem of mobile robots, the role of RL is making decisions at

a semantic level for the robot navigation. One of the ways

to make such decisions is tuning the behavioral multi-

objective coefficients online based on the performance-

driven feedback. In this way, the RL agent is able to

determine the time-varying preferences among different

objectives at different navigation time.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This work is supported by xiangtan university (no. IRT-16R06

and no. T2014224) and National Natural Science Foundation of

China (no. 61105092, no. 61173076 and no. 61473042).

ORCID iD

Kai Zhang https://orcid.org/0000-0002-0002-2184

References

1. Hernandez-Del-Olmo F, Llanes FH, and Gaudioso E. An

emergent approach for the control of wastewater treatment

plants by means of reinforcement learning techniques. Expert

Syst Appl 2012; 39(3): 2355–2360.

2. Mi K, Zhang H, Zheng J, et al. A sampling-based optimized

algorithm for task-constrained motion planning. Int J Adv

Robot Syst 2019; 16(3): 1729881419847378.

3. Nascimento TP, Dórea CET, and Gonçalves LMG. Nonlinear

model predictive control for trajectory tracking of nonholo-

nomic mobile robots: a modified approach. Int J Adv Robot

Syst 2018; 15(1): 1729881418760461.

4. Ishigami G, Otsuki M, and Kubota T. Range-dependent ter-

rain mapping and multipath planning using cylindrical coor-

dinates for a planetary exploration rover. J Field Robot 2013;

30(4): 536–551.

5. Silver DL, Yang Q, and Li L. Lifelong machine learning

systems: Beyond learning algorithms. In: AAAI Spring Sym-

posium Series, Bellevue, Washington, USA, 14–18 July

2013.

6. Parisi GI, Kemker R, Part JL, et al. Continual lifelong learn-

ing with neural networks: a review. Neural Netw 2019; 113:

54–71.

7. Chen Z and Liu B. Lifelong machine learning. San Rafael:

Morgan & Claypool, 2018.

8. Hassabis D, Kumaran D, Summerfield C, et al. Neuroscience-

inspired artificial intelligence. Neuron 2017; 95(2): 245–258.

9. Gao H, Shi G, Xie G, et al. Car-following method based on

inverse reinforcement learning for autonomous vehicle

decision-making. Int J Adv Robot Syst 2018; 15(6):

1729881418817162.

10. Zhong C, Liu S, Lu Q, et al. Continuous learning route map

for robot navigation using a growing-on-demand self-

organizing neural network. Int J Adv Robot Syst 2017;

14(6): 1729881417743612.

11. McCloskey M and Cohen NJ. Catastrophic interference in

connectionist networks: the sequential learning problem. Psy-

chol Learn Motiv 1989; 24: 109–165.

12. Mermillod M, Bugaiska A, and Bonin P. The stability-

plasticity dilemma: Investigating the continuum from cata-

strophic forgetting to age-limited learning effects. Front

Psychol 2013; 4: 504.

13. Gepperth A and Karaoguz C. A bio-inspired incremental

learning architecture for applied perceptual problems. Cognit

Comput 2016; 8(5): 924–934.

14. Rebuffi SA, Kolesnikov A, Sperl G, et al. Icarl: Incremental

classifier and representation learning. In: Proceedings of the

IEEE conference on computer vision and pattern recognition,

Honolulu, Hawaii, USA, 21–26 July 2017, pp. 2001–2010.

New York: IEEE.

15. Dooraki AR and Lee DJ. Memory-based reinforcement

learning algorithm for autonomous exploration in

unknown environment. Int J Adv Robot Syst 2018; 15(3):

1729881418775849.

16. Parisi GI, Tani J, Weber C, et al. Lifelong learning of human

actions with deep neural network self-organization. Neural

Netw 2017; 96: 137–149.

17. Rusu AA, Vecerik M, Rothörl T, et al. Sim-to-real robot

learning from pixels with progressive nets. In: Conference

on Robot Learning, Mountain View, California, USA, 13–

15 November 2017.

18. Lin LJ. Self-improving reactive agents based on reinforce-

ment learning, planning and teaching. Mach Learn 1992; 8(3-

4): 293–321.

19. Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with

deep reinforcement learning. CoRR 2013; abs/1312.5602.

20. Wilson A, Fern A, Ray S, et al. Multi-task reinforcement

learning: a hierarchical Bayesian approach. In: Proceedings

of the 24th international conference on machine learning

(ed. Z Ghahramani), Corvallis, Oregon, USA, 20–24 June

2007, pp. 1015–1022. Association for Computing Machinery.

21. Parisotto E, Ba LJ, and Salakhutdinov R. Actor-mimic: deep

multitask and transfer reinforcement learning. In: Interna-

tional conference on learning representations, Caribe Hilton,

San Juan, Puerto Rico, 2–4 May 2016.

22. Zhang J, Springenberg JT, Boedecker J, et al. Deep reinforce-

ment learning with successor features for navigation across

similar environments. In: 2017 IEEE/RSJ international con-

ference on intelligent robots and systems (ed. T Maciejewski),

Zhang et al. 13

https://orcid.org/0000-0002-0002-2184
https://orcid.org/0000-0002-0002-2184
https://orcid.org/0000-0002-0002-2184

Vancouver, BC, Canada, 24–28 September 2017,

pp. 2371–2378. New York: IEEE.

23. Schaul T, Horgan D, Gregor K, et al. Universal value function

approximators. In: Proceedings of the 32nd international

conference on machine learning (eds. F Bach and D Blei),

Lille, France, 6–11 July 2015, pp. 1312–1320. Association

for Computing Machinery.

24. Faust A, Oslund K, Ramirez O, et al. Prm-rl: long-range

robotic navigation tasks by combining reinforcement

learning and sampling-based planning. In: 2018 IEEE

international conference on robotics and automation (ed.

K Lynch), Brisbane, QLD, Australia, 21–25 May 2018,

pp. 5113–5120. New York: IEEE.

25. Scholz J and Stilman M. Combining motion planning and

optimization for flexible robot manipulation. In: 2010 10th

IEEE-RAS international conference on humanoid robots,

Nashville, TN, USA, 6–8 December 2010, pp. 80–85. New

York: IEEE.

26. Zucker M, and Bagnell JA. Reinforcement planning: Rl for

optimal planners. In: 2012 IEEE international conference on

robotics and automation (ed. L Parker), Saint Paul, MN,

USA, 14–18 May 2012, pp. 1850–1855. New York: IEEE.

27. Everett M, Chen YF, and How JP. Motion planning among

dynamic, decision-making agents with deep reinforcement

learning. In: 2018 IEEE/RSJ international conference on

intelligent robots and systems (ed. A Maciejewski),

Madrid, Spain, 1–5 October 2018, pp. 3052–3059.

New York: IEEE.

28. Mnih V, Kavukcuoglu K, Silver D, et al. Human level control

through deep reinforcement learning. Nature 2015;

518(7540): 529–533.

29. Vannoy J and Xiao J. Real-time adaptive motion planning

(ramp) of mobile manipulators in dynamic environments with

unforeseen changes. IEEE Trans Robot 2008; 24(5):

1199–1212.

30. McLeod S, and Xiao J. Real-time adaptive non-holonomic

motion planning in unforeseen dynamic environments. In:

2016 IEEE/RSJ international conference on intelligent

robots and systems (ed. W Burgard), Daejeon, South

Korea, 9–14 October 2016, pp. 4692–4699. New York:

IEEE.

31. Andrychowicz M, Crow D, Ray A, et al. Hindsight experi-

ence replay. In: Advances in neural information processing

systems (ed. W Burgard), Long Beach, California, USA, 4–9

December 2017, pp. 5055–5065. Neural Information Process-

ing Systems Foundation, Inc.

32. Hochreiter S and Schmidhuber J. Long short-term memory.

Neural Comput 1997; 9: 1735–1780.

14 International Journal of Advanced Robotic Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

