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Abstract—To be applicable to real world problems, much
reinforcement learning (RL) research has focused on continuous
state spaces with function approximations. Some problems also
require continuous actions, but searching for good actions in a
continuous action space is problematic. This paper suggests a
novel relevance vector sampling approach to action search in
an RL framework with relevance vector machines (RVM-RL).
We hypothesize that each relevance vector (RV) is placed on the
modes of the value approximation surface as the learning con-
verges. From the hypothesis, we select actions in RVs to maximize
the estimated state-action values. We report the efficiency of the
proposed approach by controlling a simulated octopus arm with
RV-sampled actions.

I. INTRODUCTION

Reinforcement learning (RL) problems are often modeled as
finite Markov decision processes (MDP) [25] with solutions
that lie in discrete spaces. Real world problems, however, re-
quire multidimensional, even continuous state representation.
Thus, the curse of dimensionality gets worse when continuous
actions are needed. In the infinite state-action spaces, fine
discretization can lead to successful control, but this can result
in the need for a prohibitive amount of experience [22].

In practical reinforcement learning studies, function ap-
proximation estimates the state-action (Q) values to gen-
eralize based on limited experience to overcome the lack
of experience. Parameterized Q function approximators have
been successfully applied to various problems [5], [16], [2],
[23], [24]. Some investigated transfer learning approaches to
improve learning efficacy over the function approximations
[18], [8], [28], [1]. Also, some studies have demonstrated
convergence in practical applications involving continuous
domains [19], [15], [13]. However, these approaches are still
slow for practical applications and require numerous samples
to learn convergent, near-optimal policies.

Several studies have shown that continuous actions allow the
solution of problems that are impossible to solve with coarse
discretization of action space [29], [10], [13]. The following
studies considered alternatives to discretization. From a finite
set of actions, some researchers obtain real-valued actions by
interpolating discrete actions based on the value functions.
Millan, et al., [20] sampled real-valued actions from neigh-
bors incrementally based on the approximated value function.
Hasselt, et al., [29] select actions that have the highest Q

value from the interpolator. Lazaric, et al., [13] use Sequential
Monte Carlo methods, which resample real continuous actions
according to an importance sampling. Lee, et al., [15] use
back-propagation over Greedy-GQ with neural networks to
search for actions that maximize the Q estimation. However,
these approaches require additional computations to search
continuous actions.

Lee and Anderson [14] have shown that relevance vector
machine (RVM) function approximation can be successfully
adopted and the gradual knowledge augmentation improves
the robustness of learning. However, the RVM-based learning
framework for reinforcement learning (RVM-RL) with aug-
mentation suffers from a growing search space when a problem
requires continuous action control. The sparse nature of RVMs
captures the significant masses of an agent’s experience, and
it is observed that relevance vectors tend to be located in
the modes of the Q estimation curve. This happens especially
when the Q estimation converges to the true Q values. Thus,
we can reuse the actions in a relevance vector set since one
of them is likely to be an optimal action.

The major contributions of this paper are the modification
of RVM-RL and low-cost, continuous action sampling. To
overcome the limitations of RVM-RL for continuous ac-
tion domain problems, we replace the costly target function
approximation shaping with significant (or relevant) sample
storage for relevant experience replay. In addition, by reusing
already discovered relevance vectors, our approach lowers the
continuous action search cost to constant time. The approach
proposed here to achieve the action sets from relevance vectors
resembles importance sampling in sequential Monte Carlo
learning [13], so its computation load is less intense than
the direct line search as in [15]. Since RVM-RL stores the
sparse relevance vectors from the learning process, there is no
additional sampling cost required.

In Section II, we briefly summarize MDP and reinforcement
learning and introduce RVM-based reinforcement learning
framework. In Section III, we introduce our novel approach
of continuous relevance vector action sampling with relevanct
experience replay. Octopus arm control experiments and re-
sults of the proposed approach are summarized in Section IV,
and we summarize our findings in Section V.



II. BACKGROUND

A. Reinforcement Learning

A Markov decision process (MDP) [25] is a mathematical
framework for modeling decision making problems. MDP is
defined as a tuple (S,A, P ass′ , R, γ), where for each time step
t = 0, 1, 2, . . ., with probability P ass′ , action at ∈ A in state
st ∈ S transitions to state st+1 = s′ ∈ S, and the environment
emits a reward rt+1 ∈ R.

Reinforcement learning involves interactions between an
agent and an environment, and it can be modeled as a
sequential decision problem, thus MDP. In an environment
specified by the given MDP, a reinforcement learning agent
aims to maximize the reward in the long run. For control
problems, to estimate how good an action is in a given state,
we can define the action value method for policy π, Qπ(s, a),
as expected sum of rewards:

Qπ(s, a) = E[
∞∑
t=0

γtrt+1|st = s, at = a, π]

where γ ∈ (0, 1] is a discounting factor. Reinforcement
learning looks for an optimal policy that maximizes Qπ , which
can be denoted Q∗.

Q∗(s, a) = E[rt+1 + γmax
a′

Q∗(st+1, a
′)|s = st, a = at]

Without an environmental model, temporal difference (TD)
learning learns directly from experience and bootstraps to
update value function estimates—it updates the estimates
based on the previously learned estimates.

For control problems, on-policy TD, SARSA [26], estimates
Qπ(s, a) for the current behavior policy π. The Q estimate
for next state and action st+1 and at+1 is fed in for bootstrap
update as follows:

Q(st, at)← Q(st, at)+α[rt+1+γQ(st+1, at+1)−Q(st, at)].

Here, the action value function Q is for current behavior policy
π. For simplicity, π superscript is omitted. Independently from
the current behavior policy, off-policy TD, Q-learning [30],
directly approximates Q∗. From Q∗(s, a) = maxa′(s, a

′), Q-
learning updates is defined by

Q(st, at)← Q(st, at)+α[rt+1+γmax
a

Q(st+1, a)−Q(st, at)].

From the estimated Q, the current best policy can be chosen
greedily:

π∗(s)← argmax
a

Qπ(s, a).

However, greedy action selection can result in not enough
samples collected for correct estimates of value function. In
this paper, we use ε-greedy that selects a random action with
probability ε and chooses a greedy action with probability 1−ε.
By decreasing ε as learning goes on, an agent exploits the
learned best actions more.

B. RVM-RL

Lee, et al., [14] suggested a knowledge augmentation frame-
work with relevance vector machines (RVMs) [27] as Q
function approximations. The reinforcement learning frame-
work, RVM-RL, extended fitted-Q [21] and transferred learned
experiences to next batch in a mini-batch training framework.
The framework gradually augments the experience to learn
efficiently and robustly.

The learning framework includes five steps: 1) collect
samples, 2) train an RVM, 3) evaluate the regression training,
4) decide heuristics for shaping and transfer, 5) transfer learned
knowledge for next batch learning. Through the repetitions
of these steps, the target function approximator is adapted
by adding the relevance vectors (RVs) and by updating the
weights with stochastic gradient descent as below.

RV(RVMtarget) = RV(RVMtarget) ∪ RV(RVMt+1)

W(RVMtarget) = (1− c)W(RVMtarget) + cW(RVMt+1)

Here, RV(·) retrieves the relevance vectors of RVM and
W(·) retrieves the weights (mean estimates) of the RVM. c
is a learning rate that determines how fast it reflects new
knowledge.

In these series of learning steps, this approach resembles
models of redundancy elimination (infomax principle) [17], [9]
and the sequential building of encoded knowledge. Through
RVM optimization, we apply the principle of efficient coding
to represent knowledge. By transferring and updating the target
function approximation, knowledge is accumulated to help find
an optimal solution to a particular problem. That is, RVM-
RL gradually increases its knowledge about the RL task from
experience until it eventually reaches a good solution.

III. METHODS

The main goal of relevance vector sampling is minimizing
the computation costs for continuous action search. By using
the sparse solutions of relevance vector machines, we can
easily construct a continuous action set that has the best action
with maximum Q value. To tackle the large search space
problem with real-valued continuous actions, it is required to
improve the RVM-RL as follows.

A. Relevant Experience Replay

RVM-RL can be slow to learn when the problem is ex-
tremely complex. When the number of input dimensions grow
and the state and action spaces are continuous, RVM-RL
spends much time on maintaining multiple RVMs and updat-
ing relevant parameters. Having only one RVM can reduce the
required computation or transfer processes. However, a single
RVM can be unstable with overfitting on each batch of training
data. As a solution, we suggest a relevance vector storage
for experience replay–we named this as relevant experience
replay. Thus, the modified RVM-RL, after each batch, stores
relevance vectors and replays them as a training sample that
is combined with the new minibatch sample. From pilot tests,
it is observed that the relevant experience replay reduces the



Fig. 1. The modified RVM-RL learning framework. Instead of maintaining
multiple RVMs, it shapes a single RVM with relevant experience replay.

possibility of losing sparsity with augmentation. Fig. 1 depicts
the modified RVM-RL with experience replay.

B. Relevance Vector (RV) Sampling

Lee, et al., [15] have demonstrated continuous action search
with back-propagation in neural networks. The best action
leads to the maximum estimated Q value on each step. At
time t, with trained weights vt and wt, the estimated optimal
action at

∗ is determined by this one step search [22]:

at
∗ = argmax

a
Qvt,wt(st,a),

where v
(a)
t are the weights applied to action input (v =

[v(s),v(a)]). The best action a∗ that maximizes Q(st,a) was
found by using gradient ascent of Q(st,a) with respect to a:

∂Q(st,a)

∂a
= wt

> � (1− z2)v
(a)
t

>
.

Here � represents a component-wise multiplication, and z are
the outputs from hidden units with tanh activation function.

Similarly, using the derivative of the radial basis function
kernel, the gradient for continuous action search over RVM
function approximation can be defined:

∂Q(st,a)

∂a
= −2γ(wt � φ)>(a− a′). (1)

where a′ is actions in a set of relevance vectors.
These gradient search approaches require additional com-

putational costs for optimization. Furthermore, there is no
guarantee for global maximum solution with the additional
computation since the Q approximation can have multiple local
maxima.

Fig. 2 shows that with multiple RVs, depending on the
selection of kernel parameters, it is likely to have more than
one local maximum, which makes it difficult to find a global
maximum with a gradient descent approach. Along with the

(a) Q plots

(b) Example Q on 4

Fig. 2. Multi-modal Q function approximation with RVM-RL. As learning
converges, relevance vectors are place the modes of Q function approximation.
Restricting the search of continuous actions to relevance vectors lead the
proposed RV sampling.

multimodality, it is observed that the placements of relevance
vectors are located at the modes of the Q estimation surface.

Now, we suggest a way to use RVM as an action sam-
pler based on the observation. With an assumption that the
current Q estimation is valid, the action sets that are stored
in relevance vectors lead local maxima. For greedy action
selection, the RV action with highest Q value in the action set
can be chosen. From state st, when current relevance vectors
are stored in X(RVM) = [s(RVM), a(RVM)], the candidate
actions are ã(RVM) after removing duplicate elements. From
the candidates, we select action as follows:

a∗t = argmax
a∈ã(RV M)

Qvt,wt
(st, a). (2)

By using RVM-RL framework, the relevance vector sampling
simplifies the continuous action set construction greatly. Ad-
ditional computation is only required to remove the duplicate
actions in relevance vectors that are taken in different states.

C. Kernel for Bases

For the given MDP model, RVM function approximation
maps state and action inputs to the estimated Q values, ie.
Q : S × A → R for state set S and action set A. Since the
positive definite kernels are closed under multiplication, Engel,



Fig. 3. 2-dimensional octopus arm model with N compartments [31]. Spring-
like muscles, 2 longitudinal (dorsal and ventral) and 2 transverse, surround a
constant area C, and 2N + 2 masses connect the muscles.

et al., [6] separately compute the correlation between different
state values and the correlation between different action values
with the product kernel.

k(s, a, s′, a′) = ks(s, s′)ka(a, a′)

Interestingly, the kernel approach enables us to handle both
parametric and nonparametric problems. In this paper, our
target problem includes finding a general solution for dif-
ferent goals, so we include goal position in the input, ie.
Q : S × A × G → R for the goal position set G. For this,
we extend the product kernel with an additional kernel for the
goal inputs.

k(s, a, g, s′, a′, g′) = ks(s, s′)ka(a, a′)kg(g, g′)

For the continuous action space, this product kernel can
increase the search space. Thus, the proposed search of actions
with relevance vectors can simplify the problem.

IV. EXPERIMENTS

A real octopus arm is a complex organ with many degrees
of freedom. Here, the Yekutieli’s two-dimensional model [31]
is used (Fig. 3). The model is composed of spring muscles
for each compartment. The basis of the model is that mus-
cular hydrostats maintain a constant volume [11], so forces
are transferred among the segments. Gravity, buoyancy, fluid
friction, internal particle repulsion and pressure, and muscle
contractions are computed each time step. For our experiments,
we implemented a Python version of the octopus arm model
defined in the RL-competition [3] (Fig. 4), which simulates the
simplified physics in Yekutieli, et al., [31]. The problem con-
tains 10 compartments, and the ventral, dorsal, and transverse
muscles are controlled by independent activation variables.
For the experiments, we fix the base and do not consider
rotation about the base. To make the problem simple, Engel,
et al., [7], used 6 predefined discrete actions. Here we do not
predefine actions. Without reducing the action space manually,
we train the arm to learn from the full action space defined by
33-dimensional real-valued actions. For the 10-compartment

(a) Initial State

(b) Rereaching the goal

Fig. 4. Octopus arm control task (10 compartments)

example, the state space is defined by 82 continuous values:
x-y coordinate positions of each joint, and their velocities.

We place the goal at (4, 2) as in Fig. 4. Initially the base of
the arm is placed close to (0, 0) and the arm is straight toward
the right. The target task is touching the goal with any part
of the arm. On each time step, the arm receives −0.01 as a
penalty, and if it reaches the goal, it gets 10 as a reward. The
maximum number of steps per each episode is limited to 1000
steps. Thus, if the arm touches the goal at the last moment,
the total reward will be 0. If it fails to reach the goal, the total
will be −10. Positive, larger rewards are obtained when the
goal is reached sooner. The episodes are repeated 200 times
with exponentially decreasing ε value from 1 to 0.01. Each
experiment was run 10 times.

Fig. 5 shows the learning performance with RV-based con-
tinuous action selection in RVM-RL. For the test, we use the
kernel parameter γk = 10.0 and the learning rate c = 0.6.
The maximum number of RVM iterations was set to 100 and
tolerance threshold was set to 1× 10−5.

In the beginning, since the RVM-RL agent starts learning
with no RV basis, the agent explores the world randomly or



(a) Initial State

(b) Approaching the goal

Fig. 5. Successful learning with RVM-based continuous actions. Blue line
represents mean steps and rewards over 10 experiments, and green region
shows the min and max values.

revisits one of a few actions in a RV set when ε decreases.
This pure exploration stage does not have any success record,
but it accumulates the RV samples with continuous actions.
After about 25 episodes, as the agent applies RV actions
more often, instability of learning happens because of poor
Q approximation. As learning continues, after 50 episodes
of experience the transient curve quickly converges in both
reward and step curves. Eventually, it finds a good solution to
reach the goal in 137 steps. These results are comparable to
our previous continuous action search with neural networks
[15] but with very low cost for search. With the similar
performance, RV sampling benefits from its sparsity again.
By evaluating the small number of actions, it can quickly find
a greedy action while neural network back-propagation search
spends more time with gradient descent updates. Furthermore,
the RV sampling has room for improvement by adopting
efficient exploration strategies such as importance sampling
[13] and Bayesian exploration-exploitation control [4], [12].

Fig. 6 depicts the continuous actions in the chosen relevance
vectors after training. After training, 21 RVs are achieved,
and they repeat the two actions, one full contraction on

Fig. 6. Two core continuous actions found in 21 RVs after training. As the
annotated number in each box represents the contraction force. 1 means full
contraction force and 0 means releasing action without any force on a muscle.

dorsal muscles (action2) and a more complex s-shaped muscle
contraction (action2). These two actions are alternated to curl
the octopus arm to reach the goal. We can observe that sparse
(only two) action options are left. This supports the argument
about the benefits of RV sampling over slower neural network
gradient descent action search. The solutions are sparser, so
it is faster to evaluate the actions. However, we need to be
careful about extremely sparse solutions that are likely to miss
important samples, which can result in a poor policy. We
expect this problem could be solved with better exploration
strategies.

Now, we generalize the problem to have multiple goals. In
this experiment, we change the goal positions to (4, 2) and
(4, -2) every the other episodes. Alternating the opposite goal
locations can disturb what is learned. Especially when it is
overfitted to one goal, this problem ends up with oscillating
performance. To simplify this problem, we adopt transfer
learning. We train for two goals separately, one with (4, -2)
and the other with (4, 2). After finding near-optimal policies
from two tasks, an agent learns two curling actions toward the
different goal directions. After that, we transfer the learned
relevance vectors to tackle the changing goal problem. In this
problem, we added goal position in the state input along with
state and action. Fig. 7 shows the successful learning curve
from 20 experiments. With the transferred relevance vectors,
after 20 episodes of oscillation with random exploration (large
ε), it quickly discovers good continuous actions and a near-
optimal policy that reaches the goals quickly. For this ex-
periment, we used the same parameters that we used for the
previous single goal experiment.

Videos showing the arm controlling at different learning
stages are available at www.cs.colostate.edu/∼lemin/octopus.
php.



Fig. 7. Successful transfer learning from two separate tasks to a moving
goal task on each episode. In the beginning, it oscillates without noticing
the changes of the goal, but as it proceeds, it discovers a good policy that
can handle both goals. Blue line represents the average over rewards over 20
experiments, and green region represents the minimum and maximum values.

V. CONCLUSION

In this paper, we proposed a sparse Bayesian reinforcement
learning algorithm with novel relevance vector sampling. Lee,
et al.’s, [14], RVM-RL framework has been improved to handle
problems with large search spaces by using experience replay
with relevance vector samples. The proposed approaches are
successfully applied to the high dimensional, continuous oc-
topus arm control problem, even with alternating goals.

The following steps will be taken to further improve the
approach described here. Since the proposed approach assumes
the eventual convergence of Q approximation, it can guarantee
fast or stable learning only when it reaches the near-optimal
point. Thus, we can combine (1) and (2) by using the RV
actions as starting position for gradient search for improved
learning performance in early stage. Instead of random explo-
ration, however, if we sample actions efficiently based on the
current RVs and Q estimation, RVM-RL is expected to place
RVs on the peaks of new Q estimation and the correct action
with the highest Q value will be selected with greedy strategy.
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