
Distributed Multi-Hop Traffic Engineering via Stochastic Policy
Gradient Reinforcement Learning

Pinyarash Pinyoanuntapong, Minwoo Lee, Pu Wang
Department of Computer Science

University of North Carolina Charlotte
Charlotte, USA

{ppinyoan, minwoo.lee, pu.wang}@uncc.edu

Abstract— Multi-hop networks (e.g., mesh, ad-hoc, and sen-
sor networks) are important and cost-efficient communication
backbones. Over the last few years wireless data traffic has
drastically increased due to the changes in the way today’s
society creates, shares, and consumes information. This de-
mands the efficient and intelligent utilization of limited network
resources to optimize network performance. Traffic engineering
(TE) optimizes network performance and enables optimal
forwarding and routing rules to meet the quality of service
(QoS) requirements for a large volume of traffic flows. This
paper proposes a distributed model-free TE solution based on
stochastic policy gradient reinforcement learning (RL), which
aims to learn an stochastic routing policy for each router so that
each router can send a packet to the next-hop router according
to the learned optimal probability. The proposed policy-gradient
solution naturally leads to multi-path TE strategies, which can
effectively distribute the high traffic loads among all available
routing paths to minimize the E2E delay. Moreover, a dis-
tributed software-defined networking architecture is proposed,
which enables the fast prototyping of the proposed multi-agent
actor-critic TE (MA-AC TE) algorithm and in-nature supports
automated TE through multi-agent RL learning.

I. INTRODUCTION

Motivation. Over the last few years data traffic has
drastically increased due to the changes in the way today’s
society creates, shares, and consumes information. Recent
Cisco’s Visual Networking Index (VNI) [1] forecasts three-
fold IP and internet traffic growth and expect 2.6 Exabytes
of daily use in 2022. They project over 30 percent of the
compound annual growth rate of internet traffic. Furthermore,
wireless multi-hop networks (e.g., mesh, ad-hoc, and sensor
networks) emerge as important and cost-efficient commu-
nication backbones for establishing interconnections among
Internet of things, 5G small cells, CubeSats (miniaturized
satellites), roof access points of community networks, first
responders in disaster zones, and soldiers in battlefield.

Fulfilling the necessity to accommodate demand growth,
and utilizing limited network resources intelligently, traffic
engineering (TE) [2] is one of the most important methods.
TE optimizes network performance by measuring real-time
network traffic, and designing optimal routing rules to meet
the quality of service (QoS) requirements for a large volume
of traffic flows. End-to-end (E2E) delay is one of the
key TE metrics. Minimizing E2E delay, however, is very

This work is supported by NSF 1763182

challenging in large-scale wired networks and wireless multi-
hop networks due to the profound dynamics in traffic flow
patterns, working conditions of routers, network topology,
and link status.

Challenges. To minimize E2E delay, the TE solutions can
be classified into three categories: (1) heuristic approach, (2)
model-based optimization, and (3) model-free optimization.
The heuristic approaches, such as OSPF, IEEE 802.11s [3],
and B.A.T.M.A.N. [4], are generally based on shortest path
routing protocol. Heuristic methods are simple and easy to
implement. But, they cannot achieve the optimal E2E TE
performance.

The model-based optimization approaches are generally
based on network utility maximization (NUM) framework
[5], [6], where the TE problem is formulated as constrained
maximization problems of the utility function. However,
these solutions suffer from the following three issues. First,
they rely on strong assumptions on the network model, such
as per-flow per-link queuing structure, unbounded buffer size
for each queue, bounded variance of traffic arrivals, and the
availability of instantaneous link rates. These assumptions
do not hold for practical computer networks. Second, they
cannot be used to minimize E2E delay because the E2E delay
cannot be mathematically modeled as explicit functions of
TE control parameters, such as traffic splitting ratio over each
output link [5], [6], which, however, have to be included in
the utility function in the NUM formulation. Third, they are
not designed to handle non-stationarity caused by the time-
varying network dynamics, such as the ever-changing traffic
patterns. Because of above limitations, these model-based
optimization solutions are barely implemented as the TE
solutions to handle practical multi-hop computer networks.

To address the limitations of model-based approaches, re-
cent advances in multi-agent reinforcement learning (MARL)
have enabled the development of model-free distributed
TE optimization schemes [7], [8], [9], [10], where each
router, acting as an agent, learns the optimal local TE
policy in such a way that the collective TE policy of all
routers can achieve the optimal E2E TE performance. The
model-free TE does not rely on accurate network modeling
and unrealistic assumptions made in model-based methods.
Moreover, model-free TE is designed to work well under in-
herent dynamics, uncertainties, and non-stationarity in multi-

hop networks. The research on distributed model-free TE
mainly focuses on applying action-value methods, such as
Q-learning and its variants [11], [12], [13], [14], [15], which
learn an deterministic target policy that maximizes the TE
objective, i.e., E2E delay, by greedily selecting a action,
i.e., next-hop forwarding router. The fundamental limitation
of action-value RL methods is that they can only learn
deterministic routing policies. This naturally leads to single-
path TE solutions, where a single routing path is learned
between a source source-destination pair. The single-path
TE solutions are simple and easy to implement. However,
to improve the delay performance under high traffic load,
multi-path TE solutions are generally preferred, where each
source-destination pair is connected with multiple routing
paths to better distribute the traffic load.

Proposed Solution. To address the aforementioned lim-
itations, we propose a distributed model-free TE solution
based on stochastic policy gradient RL, which aims to learn
an stochastic routing policy for each router so that each
router can send a packet to the next-hop router according
to the learned optimal probability. The proposed policy-
gradient solution naturally leads to multi-path TE strategies,
which can effectively distribute the high traffic loads among
all available routing paths to minimize the E2E delay. In
particular, this paper the following three contributions.
• We first formulate the distributed multi-path TE problem

as a multi-agent Markov decision process (MA-MDP).
• Then, to solve this MA-MDP problem, we employ the

multi-agent actor-critic algorithm, where each router has
its own actor and critic. The local critic uses exponential
weighted average (EWA) to estimate the action-value
functions to criticize the action selections. Based on
critics inputs, the actor improves the routing policy by
representing the policy as a linear parametric probability
distribution for next-hop router selection.

• To demonstrate the feasibility of the proposed solution,
we develop a distributed software-defined networking
architecture, which enables the fast prototyping of the
proposed MA-AC TE algorithm and in-nature supports
automated TE through multi-agent RL learning.

II. PRELIMINARIES

A. Distributed TE as MA-MDP

Distributed TE can be formulated as multi-agent extension
of Markov decision process (MA-MDP) of N routers [16],
which is defined as a tuple of < S ,O1:N ,A1:N ,P,r1:N >.
In this formulation, S models a set of environmental states,
which include (1) the network topology, (2) the source and
destination (i.e., source and destination IP addresses) of each
packet in each router, (3) the number of packets (queue size)
of each router, and (4) the status of links of each router, e.g.,
signal-to-interference-plus-noise ratio (SINR). Oi is a set of
observations for each router i, which include local network
states available at router i. Ai is a set of actions for each
router i, which include the next-hop routers the current router
can forward the packets to. The transition probability P

Fig. 1: Multi-agent actor-critic (AC) architecture. Each
router’s actor updates its policy function while critic updates
the function approximation of state-action Q values.

models the environment dynamics. ri is the reward function
of each router i, which is the (negative) 1-hop delay.

When a packet enters a router i, from its local observation
o ∈Oi of the network states, the router determines where to
send this packet to (a ∈Ai). As a result, the router receives
a reward ri (i.e., (negative) one-hop delay) when the packet
arrives at its next-hop router i+ 1, which has its own local
observation o′ ∈ Oi+1. Each router selects actions based on
a local policy πi, which specifies how the router chooses
its action given the observation. The policy is stochastic
πi(a|o) : Oi×Ai 7→ [0,1], where given current observation
o∈Oi, the router sends a packet to the next-hop router a∈Ai
according to the probability πi(a|o) with ∑a∈Ai πi(a|o) = 1.
The return Gi = ∑

T
k=i rk is the total reward from intermediate

state si to final state sT , where si and sT are the states when
a packet arrives at the intermediate router i and destination
router T , respectively. Let s1 be the initial state when a packet
enters the network from its source router. The goal is to find
the optimal policy πi for each router i so that the expected
return J(πππ) (i.e., expected E2E delay) from the initial state
is maximized,

J(πππ) = E[Gi|πππ] = E[∑
T
i=1 ri|πππ] (1)

where πππ = π1, ...,πN . In TE problems, the state is uniquely
defined by the observations of all routers. Thus, in the fol-
lowing sections, for simplicity of notation, we use represent
an observation o as a state s.

B. Multi-agent Actor-Critic Architecture

To solve the above MA-MDP problem, we adopt the
multi-agent actor-critic-executor (MA-ACE) architecture as
shown in Fig. 1, which proposed in our previous work [16],
which is originally designed for implementing action-value
based TE. In this paper, we extend it to implement the
policy-based TE, multi-agent actor-critic traffic engineering
(MA-AC TE). In MA-AC TE architecture, each router has
its own actor and critic running locally. The local critic
uses a variety of methods, such as exponential moving

2

average and function approximation, to estimate the action-
value functions qπi

i (s,a), which criticize the action selections.
Using critic’s inputs, the actor improves the stochastic target
policy.

In particular, the stochastic target policy for each router i is
represented by a parametric probability distribution πθi(a|s).
The parametric policy πθi(a|s) stochastically selects action
a in state s according to parameter vector θi. As a result,
the expected return in eq. (1) also becomes parametric,
J(πππ) = Jθθθ (πππθθθ), where θθθ = θ1, ...,θN . Then, the optimal joint
policy πππ can be learned by updating the policy parameter
θθθ in the direction of the gradient ∇θθθ Jθθθ (πππθθθ). In the multi-
agent setting, by adopting the policy gradient theorem [17],
[18], each router i updates its policy parameter θi along the
direction of the partial derivative ∇θiJθθθ (πππθθθ),

∇θiJθθθ (πππθθθ) = E
[
qπi

i (s,a)∇θi log(πθi(a|s))
]
. (2)

Intuitively, eq. (2) indicates that the policy parameter θi is
updated in such a direction that the action with larger action-
value or expected return is conservatively assigned with a
higher probability.

III. POLICY-GRADIENT DISTRIBUTED TE

A. Critic with EWA Policy Evaluation

As shown in eq. (2), the performance of the policy π is
measured by the action-value qπ

i (s,a), which is a E2E TE
metric. Thus, there will be no direct training sample for
policy evaluation until a packet forwarded by this router
arrives at its destination. Inspired by temporal-difference
prediction [18], we can apply spatial-difference (SD) pre-
diction to quickly update the estimation of qπ

i (s,a) only
using local information exchanged between adjacent routers.
In particular, the action-value qπ

i (s,a) of router i can be
recursively rewritten as the sum of 1-hop reward of router i
and the action-value of the next-hop router i+1, i.e.,

qπi
i (s,a) = E

[
ri +qπi+1

i+1 (s
′,a′)

]
. (3)

This equation (3) indicates qπi
i (s,a) can be estimated by

averaging the samples of ri+qπi+1
i+1 (s

′,a′). This leads to a sim-
ple SD predication method based on exponential weighted
average (EWA), which iteratively updates the estimate of
qπi

i (s,a), denoted by Qπi
i (s,a), based on 1-hop experience

tuples (s,a,ri,s′,a′) and the estimate of qπi+1
i+1 (s

′,a′) of next-
hop router, denoted by Qπi+1

i+1 (s
′,a′), i.e.,

Qπi
i (s,a)← Qπi

i (s,a)+α[ri +Qπi+1
i+1 (s

′,a′)−Qπi
i (s,a)] (4)

where α ∈ (0,1] is the learning rate of the critic.

B. Actor with Time-average Stochastic-Gradient Policy Im-
provement

One of key challenges faced by policy-gradient methods
is how to properly parameterize the policy without inducing
unnecessary learning complexity and instability. Since our
action space is discrete and not large, for each router i, we
form a parameterized preference function hi(s,a,θi) for each

state-action pair (s,a). Then, the policy πi is parameterized
through exponential softmax distribution,

πθi(a|s) =
exp(h(s,a,θi))

∑b∈Ai exp(hi(s,b,θi))
(5)

which indicates that the action with higher preference in
each state is assigned with higher probability. The prefer-
ences hi(s,a,θi) themselves can be parameterized nonlinearly
through deep neural networks, where the θi are the network
weights. However, since the local state space is not large
and wireless routers do not have GPU-accelerated computing
units, we will adopt computation-light linear parameteriza-
tion for preference hi(s,a,θi), i.e.,

hi(s,a,θi) = θ
T
i x(s,a) (6)

where x(s,a) is the feature vector. Each component x j(s,a)
of x(s,a) is a function of the state-action pair (s,a). In this
paper, we employ the simplest feature function, which is the
indicator function. This leads to a feature vector x(s,a) =
(1[(s,a) = (s1,a1)], ...,1[(s,a) = (sn,an)]). As a result, the
target policy in (6), which is the policy we want to learn
and optimize, becomes

πθi(a|s) =
eθ T

i x(s,a)

∑b∈Ai eθ T
i x(s,b)

.

The logarithmic gradient of the parametric policy gradient is
computed by

∇θi logπθi(a|s) = x(s,a)−∑
b

x(s,b)πθi(s|b). (7)

Then, according to eq. (2), to find the policy that minimizes
E2E delay, the local policy of each router is updated along
the gradient direction defined in eq. (2), where the new θ

t+1
i

is updated based on the previous θ t
i , the action value estimate

from local critic and logarithmic policy gradient logπθ t
i
(a|s),

i.e.,
θ

t+1
i = θ

t
i +βQπi

i (s,a)∇θ t
i
logπθ t

i
(a|s) (8)

where β ∈ (0,1] is the learning rate of the actor. To further
reduce the variance in the learned policy, we calculate time-
average value of the parameter θ̄

t+1
i = 1

t+1 ∑
t+1
k=1 θ k

i = t+1
t θ t

i +
1
t θ

t+1
i . The behavior policy, which generates the actual

action, adopts the time-averaged parameter θ̄
t+1
i , i.e.,

π̄θi(a|s) =
eθ̄i

T x(s,a)

∑b∈Ai eθ̄i
T x(s,b)

.

IV. DISTRIBUTED SDN FOR DISTRIBUTED
POLICY-GRADIENT TE

A. Design Principles

The multi-agent learning framework for distributed TE
calls for new network architecture, which provides pro-
grammable control and programmable measurement capa-
bilities. Software-defined networking (SDN) technologies
provide such capability. In particular, the main ideas of
SDN are (i) separating the data plane from the control
plane, (ii) employing the programmable forwarding table

3

through an open and standardized interface, e.g., Openflow,
and (iii) using a centralized network controller to change the
networking behavior.

Topology
Discovery

Apps

Master Network Operating System

Rest API

Centralized
Controller

RL Agent
Traffic

Monitoring

Rest API

Local Network Operating System

Local Controller

Open Flow

RL Agent
Traffic

Monitoring

Rest API

Local Network Operating System

Local Controller

Open Flow

Router 1 Router 2

Fig. 2: Distributed software-defined network (D-SDN) ar-
chitecture. Our prototype of the wireless mesh network that
adopts D-SDN is at http://www.softmeshnet.com/

Fig. 3: Local reinforcement learning (actor-critic) agent for
D-SDN

Despite its advantages, current SDN paradigm cannot be
directly applied in wireless multi-hop networks, because they
are mainly designed for high-speed wired networks, where
centralized control and measurement are feasible. To address
such challenge, we develop a distributed software-defined
network (D-SDN) architecture (Fig. 2), which is particularly
suitable for wireless multi-hop networks, where distributed
control is highly desirable due to the lack of reliable wireless
control channel. In particular, D-SDN has two types of
network controllers: the centralized controller running on
a server, and local controller running on each software-
defined router. The centralized controller provides (i) the
southbound APIs to enable real-time programmable control
of the physical-, MAC-, and network-layer functions of wire-

H1
H4S1

S2

S3

S4

Fig. 4: Mesh Network Topology

less mesh routers, (ii) the high-level network applications
(such as topology discovery and mobility management) for
simplified and automatic network management, and (iii) the
northbound APIs for easy access to the high-level network
services and the global network state information (such as
network topology and router health conditions). The local
controller include programmable flow table (i.e., openflow
table), which can be either updated by the centralized con-
troller or by the local reinforcement learning engine (Fig. 3),
which implements the proposed actor-critic algorithm.

In particular, whenever a packet comes to a router, a
forwarding rule is executed, which includes MATCH and
ACTION fields. If there is a MATCH entry for the packet
header fields, e.g., destination IP, then the corresponding
ACTION (e.g., forwarding the packet to a specfic output
port) will be executed for that packet. In our case, the
forwarding action (i.e., output port) is modified for every
N packets according to the learned probability πθi(a|s).

B. Feasibility Analysis

In this paper, we implement the distributed SDN using
Mininet SDN emulator [19], where each software-define
router is implemented by a software switch called open-
vswtich [20]. Both centralized and local controllers are
implemented by modifying RYU SDN controller [21]. To
verify the behavior of the MA-AC TE algorithm, we estab-
lish a small-scale multi-hop network with four routers as
shown in Fig. 4. The terminal computer H1 injects a traffic
flow to the destination of computer H4 with an Poisson
distributed packet inter-departure time characterized by an
average packet rate of 300 packets per second and packet
sizes of 1500 Bytes. The traffic runs for 35 minutes. Thus, the
data rate of the traffic flow has 3.6 Mbps. The link rate is 1.5
Mbps and the link propagation delay is 50 ms. We compare
the performance of our policy-gradient TE with the action-
value based TE, i.e., the celebrated Q-learning based routing
[11]. In particular, the action-value control algorithms aim to
learn an deterministic routing policy, which maximizes the
performance objective J(πππ) in eq. (1) by greedily selecting
a fixed action. This can be done by letting each router i
greedily improve its current policy πi, i.e., select the action
with the maximum estimated action-value,

πi(s)← argmax
a

Qπi
i (s,a).

Since action-value based methods can only learn determinis-
tic policies, this naturally leads to single-path TE solutions.

4

5 10 15 20 25 30 35
Time (Minutes)

2

3

4

5

6

7

8

De
la

y
(s

)

MA-AC
Q-routing

(a) E2E Delay

5 10 15 20 25 30 35
Time (Minutes)

1000

1250

1500

1750

2000

2250

2500

2750

3000

Bi
tra

te
 (k

bp
s)

MA-AC
Q-routing

(b) Throughputs

5 10 15 20 25 30 35
Time (Minutes)

3000

4000

5000

6000

7000

8000

Pa
ck

et
s l

os
s

MA-AC
Q-routing

(c) Packet Loss

Fig. 5: Performance comparison between MA-AC TE routing and Q-learning based routing.

0 5 10 15 20 25 30 35
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

S1

(S2)
(S3)

(a) Policy of edge router S1

0 5 10 15 20 25 30 35
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

S2

(S1)
(S4)

(b) Policy of core router S2

0 5 10 15 20 25 30 35
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

S3

(S1)
(S4)

(c) Policy of core router S3

Fig. 6: Learned routing policies of each router under MA-AC TE. For each router, each curve shows the probability of
selecting a particular next-hop router.

5 10 15 20 25 30 35
Time (Minutes)

2

4

6

8

10

12

14

De
la

y
(s

)

MA-AC
Q-routing

(a) E2E Delay

5 10 15 20 25 30 35
Time (Minutes)

1000

1200

1400

1600

1800

2000

2200

2400

Bi
tra

te
 (k

bp
s)

MA-AC
Q-routing

(b) Throughputs

5 10 15 20 25 30 35
Time (Minutes)

400

600

800

1000

1200

1400

1600

1800

Pa
ck

et
s l

os
s

MA-AC
Q-routing

(c) Packet Loss

Fig. 7: Performance comparison of uneven links between MA-AC TE routing and Q-learning based routing.

0 5 10 15 20 25 30 35
Time (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

S1

(S2)
(S3)

(a) Policy of edge router S1

0 5 10 15 20 25 30 35
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

S2

(S1)
(S4)

(b) Policy of core router S2

0 5 10 15 20 25 30 35
Time (Minutes)

0.00

0.25

0.50

0.75

1.00

S3

(S1)
(S4)

(c) Policy of core router S3

Fig. 8: Learned routing policies of each router under MA-AC TE uneven bandwidth and link delay. For each router, each
curve shows the probability of selecting a particular next-hop router.

The Fig. 5 shows the average delay, throughput, and
packet loss rate for every 5 minutes of policy-gradient TE

solution (i.e., MA-AC TE), compared with the value-based
TE solution (i.e., Q-learning TE). It can be observed that

5

the policy-gradient TE achieves almost two times higher
throughput than Q-learning TE, with much less delay and
comparably small packet loss rate. This is because policy-
gradient TE enables multi-path forwarding, where two rout-
ing paths S1− S2− S4 and S1− S3− S4 are used, while
one routing path is learned through Q-learning TE. More
specifically, it is shown in Fig. 6 that the learned forwarding
policy of MA-AC TE converges as time proceeds. When
the policy converges, for the edge-router, it selects the next-
hop routers S2 and S3 with equal probability (i.e., 0.5) as
shown in Fig. 6(a). As shown in Fig. 6(b) and 6(c), both
core router S2 and S3 select the S4 router on the forward
path with a probability around 1, while selecting S1 router on
the backward path with a probability around 0. It is evident
that by combining the learned local policies of each router,
we obtain the collective routing policy, which balances the
traffic flow between two routing paths that have the same
end-to-end link rate. Apparently, such policy is optimal in
terms of minimizing E2E delay and maximizing network
throughput. To show the adaptability of our algorithm to
network dynamics, we increase the link rate of S1−S2 and
S2−S4 to 2Mbps and link delay to 35 ms and decrease the
link rate of S1−S3 and S3−S4 to 1Mbps and link delay to
65 ms. As shown in Fig. 7, MA-AC TE can still maintain
much lower delay, higher throughput, and smaller packet
loss, compared with value-based Q-routing. The key reason
is that the edge router S1 and core router S2 collaboratively
learned to allocate more traffic volume (around 65%) to
the path S1− S2− S4 that has higher end-to-end data rate
(2.0Mbps), compared the other path S1− S3− S4 that has
lower end-to-end data rate (1.0Mbps).

V. CONCLUSIONS

In this paper, we propose a distributed model-free TE
solution based on stochastic policy gradient RL, which aims
to minimize the E2E delay by allowing each router to send a
packet to the next-hop router according to the learned optimal
probability. The proposed policy-gradient solution naturally
leads to multi-path TE strategies, which can balance the
traffic loads among all available routing paths to minimize
the E2E delay and maximize network throughput. Moreover,
a distributed software-defined networking architecture is pro-
posed, which enables the fast prototyping of the proposed
MA-AC TE algorithm and in-nature supports automated
TE through multi-agent RL learning. In the future work,
we will implement and test the proposed policy-gradient
TE in our software-defined wireless mesh network testbed
(www.softmeshnet.com).

REFERENCES

[1] Cisco visual networking index: Forecast
and trends, 2017–2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

[2] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in 2013 Proceedings of IEEE INFOCOM,
2013, pp. 2211–2219.

[3] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berle-
mann, and B. Walke, “Ieee 802.11 s: the wlan mesh standard,” IEEE
Wireless Communications, vol. 17, no. 1, 2010.

[4] The open mesh networks consortium. [Online]. Available:
http://www.open-mesh.org

[5] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[6] S.-C. Lin, P. Wang, I. F. Akyildiz, and L. Min, “Utility-optimal
wireless routing in the presence of heavy tails,” IEEE Transactions
on Vehicular Technology, 2018.

[7] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks: a rein-
forcement learning approach,” in 2016 IEEE International Conference
on Services Computing (SCC), 2016, pp. 25–33.

[8] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero,
and A. Cabellos, “A deep-reinforcement learning approach for
software-defined networking routing optimization,” arXiv preprint
arXiv:1709.07080, 2017.

[9] Z. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrows intelligent network traffic control systems,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2432–
2455, 2017.

[10] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. Liu, and D. Yang,
“Experience-driven networking: a deep reinforcement learning based
approach,” in Proceedings of IEEE INFOCOM, 2018.

[11] J. A. Boyan and M. L. Littman, “Packet routing in dynamically
changing networks: A reinforcement learning approach,” in Advances
in Neural Information Processing Systems (NIPS), 1994, pp. 671–678.

[12] L. Peshkin and V. Savova, “Reinforcement learning for adaptive
routing,” in Proceedings of the 2002 International Joint Conference
on Neural Networks (IJCNN’02), vol. 2, 2002, pp. 1825–1830.

[13] Y. Shilova, M. Kavalerov, and I. Bezukladnikov, “Full echo q-routing
with adaptive learning rates: a reinforcement learning approach to
network routing,” in 2016 IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering (EIConRus),, 2016,
pp. 341–344.

[14] M. Kavalerov, Y. Shilova, and Y. Likhacheva, “Adaptive q-routing with
random echo and route memory,” in 2017 20th Conference of Open
Innovations Association (FRUCT), 2017, pp. 138–145.

[15] M. V. Kavalerov, Y. A. Shilova, and I. I. Bezukladnikov, “Preventing
instability in full echo q-routing with adaptive learning rates,” in 2017
IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), 2017, pp. 155–159.

[16] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic
engineering through multi-agent reinforcement learning,” in 2019
IEEE INFOCOM Workshop: NI 2019: Network Intelligence: Machine
Learning for Networking, April 2019.

[17] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems (NIPS),
2000, pp. 1057–1063.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] Mininet. [Online]. Available: http://mininet.org/
[20] Open vswitch. [Online]. Available: https://www.openvswitch.org/
[21] Ryu. [Online]. Available: https://osrg.github.io/ryu/

6

