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Abstract—Deep reinforcement learning has demonstrated its
ability to solve diverse hard problems, which were not able
to be solved previously. However, one of the main drawbacks
is the required long training time for a task. Furthermore,
trial-and-error in reinforcement learning is often inappropriate
in most real-world tasks. There were some discussions on
transfer learning, specifically sim-to-real transfer, but the design
of new environments or defining an environment with similar
or relevant goals require tedious human efforts. This research
aims to leverage practice approaches, which do not require a
new environmental design for transfer learning, to shorten the
time for training a deep reinforcement learning agent and to
achieve an optimal policy for the maximum expected rewards.
We verify the efficacy of existing practice approach with Deep
Q networks (DQN) in Atari games and also introduce a novel
practice approach involving iterations of short periods of practice
and reinforcement learning, to further improve the performance
of an agent.

Keywords—Deep Reinforcement Learning; Practice; Transfer
Learning; Deep Q-Networks

I. INTRODUCTION

Reinforcement learning (RL) has been making a big step
forward as the development of deep neural networks pro-
gresses. Combining deep learning with RL, recent advances
in deep reinforcement learning (DRL) has lead popularity in
various application areas like natural language processing [1],
resource management [2], and robotics [3]. One of the state-of-
the-art models, Deep Q Network (DQN) [4] [5] has suggested
an end-to-end model that enables an RL agent to learn directly
from raw sensory data without tedious handcrafted feature
engineering. It effectively approximates Q values to achieve
or exceed human-level of playing video games and other
environments.

Although DQN is successful in solving complex problems,
it takes an excessively long time to learn, as learning directly
from raw sensory inputs that require large search space [6].
Therefore, it needs a large number of steps of trial-and-
errors until converge. These drawbacks are consequential when
applying RL solutions to real-world applications.

Transfer learning [7] is one good solution to address these
problems. Transfer between different Atari games was ex-
amined to improve the learning speed [6]. However, transfer
learning requires human efforts to define the source and target
tasks for effective transfer of knowledge between them.

The efficiency of learning can be achieved through imitation
learning (or apprenticeship learning) [8], a kind of transfer
learning that learns from an expert’s demonstration. It trains

an agent to match the performance of a human expert demon-
strator in a given RL task. Recently, Deeply AggreVaTeD
[9] extends the imitation learning to work with deep neural
networks. However, it requires the expert’s presence to provide
proper feedback, and it is known that the transferred policy
cannot exceed the demonstrated one. Deep Q-learning from
Demonstrations (DQfD) [10] suggests a pre-training approach
to overcome the limitation of learning-from-demonstration in
Deeply AggreVaTed. The pre-training stage uses temporal dif-
ference loss along with a supervised loss to learn a policy and
to imitate the demonstrator. This method combines imitation
learning with RL which enables the agent to develop a superior
policy than the expert. It showed an acceleration in learning
but still rely on human experts to gather demonstration data.

Practice [11] suggests a new paradigm of transfer learning
that does not need experts’ help. The knowledge gained
from a non-RL source task is applied to an RL target task.
For instance, from a simple regression task of predicting
state transitions, neural network weights are pre-trained and
transferred to a Q network function approximator for target
RL training [12]. Or, the practice can be defined as training
a classifier from non-expert human demonstration data and
successive transfer of weights to a target RL task [13].

The practice has shown improved learning efficiency by
reducing the time-to-convergence and by achieving higher
asymptote in diverse problems. Moreover, it does not require
human efforts for defining the similar source and target
tasks for transfer learning. To verify the approach, Sparse
Bayesian Reinforcement Learning (SBRL) [11] explained how
the knowledge obtained from practice helps to learn a target
task by showing bases construction process in practice, their
transfer, and use of the transferred bases in target learning.

Although the efficacy of practice is examined, practice with
an end-to-end model is not well examined for learning from
large practice space with raw sensor inputs.

In this paper, we extend the practice to be applicable to end-
to-end models with deep reinforcement learning algorithms.
To further improve the efficiency of practice and learning, we
propose a novel strategy, iterative practice. Imitating human
practice and learning model (we never stop practice and
learning), iterative practice repeats practice and short-term
learning until it converges.

By preventing any possible overfitting of function approx-
imator, the iteration shortens the learning time and improves
performance in complex tasks . We present empirical results
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for iterative practice with DQN in Visual Maze and Atari
games.

Our main contributions in this work are 1) suggesting an
efficient way of training an end-to-end model by leveraging
practice, 2) examining the efficacy of a novel iterative strategy
for practice and learn, and 3) observing and visualizing the
abstract knowledge representation in deep neural networks
during practice and training.

II. BACKGROUND

A. Deep Q-Network

Deep Q Network (DQN) [4] is a deep reinforcement learn-
ing algorithm that uses deep neural networks as a function
approximator. DQN architecture is comprised of convolutional
layers, which learn encoded feature representations from raw
input images, followed by fully connected (FC) dense layers
and an output layer, which produces a single Q value output
for each valid action. Here Q value, represented as Q(s, a), is
the overall expected reward assuming the agent is in state s
and performs an action a.

Similar to classic RL algorithms, DQN interacts with an
environment and collects samples of state, action, next state,
and reward (st, at, st+1, rt+1). These samples are stored in an
experience replay memory. Mini-batches of random samples
are used for training to reduce the sampling bias and improves
the performance of DQN. For stable learning, two identically
structured networks, namely online network Qonline and target
network Qtarget, are used for Q value approximation. The
mini-batch gradient update for online network minimizes the
mean squared loss function,

L = (yt −Qonline(st, at))
2

(1)

where the target yt is defined by using the approximation from
the target network:

yt = rt + γmax
a
Qtarget(st+1, a). (2)

The target network is periodically updated with the weights
from the online network.

B. Practice

Practice is an approach that discovers shareable knowledge
representations between a source non-RL task and a target RL
task to solve the complex target task efficiently. One of the
previous works [12] showed that learning the dynamics of an
environment accelerates the learning of deep RL agents. They
explained how a neural network implements practice to obtain
suitable knowledge (the network weights w) and initialize the
Q value network with it for learning in a target environment.
A single neural network is used for both practice and training,
whose architecture comprises of multiple densely connected
layers. There are two different output layers, one gives the state
difference during practice and the other gives the Q values for
the actions during target training.

To find shareable knowledge, practice sets up a regression
problem that predicts state changes given a state. For each time

step t, it samples the state transition (st, at, st+1), and learns
a function, fw(st, at) ≈ ∆st = st+1 − st. The inconsistency
between predicted and the target state difference is defined as
the loss function. The network is trained to minimize the mean
squared loss:

L = (∆st − fw(st, at))
2
. (3)

Practice does not involve any RL-associated variables like
rewards and goals.

The learned weights from practice are used as initial values
for the RL training network which solves the actual RL
task. Interacting with a target environment, the RL agent
collects the state transition samples with feedback (st, at, rt+1,
st+1, at+1). Mini-batches of the samples are used for RL
training with temporal difference update. RL training fine-
tunes the network weights to correctly estimate the Q values.
The mean squared loss is defined from SARSA [14] update:

L = (rt+1 + γQw(st+1, at+1)−Qw(st, at))
2
. (4)

III. METHODS

A. Practice for DQN

We leverage the practice approach and speed up the learning
in DQN. Figure 1 shows our DQN network architecture for
practice and RL training. The architectures of DQN and
practice networks have an identical structure with three con-
volutional layers (32 8x8 filters, 64 4x4 filters, 64 3x3 filters)
followed by a fully connected layer (512 hidden units). In our
model, we train the practice network to solve a non-RL task of
predicting the state change ∆st given the current state st, i.e.,
the difference between the current state and next possible state
[12]. The actions are chosen randomly instead of following any
policy. Unlike the existing practice approach (Section II-B),
here we do not feed action at as an input to the practice
network but instead, we use it in the loss function. For RL
training, we follow the traditional DQN approach with two
identical networks, online and target. We train the networks
on the RL-task and it predicts the Q-values for each possible
action.

Since the model learns directly from raw images, we
consider the pixel value from the snapshot of the game or
task at time t as the state st. The first step is training the
practice network followed by RL training. For practice, we
collect npr number of samples of (st, at, st+1) with random
actions and store in a practice memory. We use mini-batches
of these samples to train the practice network to estimate the
state difference ∆st = st+1 − st for all possible states based
on available actions. From the predicted state differences, we
only consider the state difference based on the current action
at. The target state difference here is the difference in pixel
values of st+1 and st. We use the mean squared loss (Eq. 3) to
measure the inconsistency between predicted and target state
difference. To minimize the loss, we train the practice network
with Adam optimizer for a duration of d(0)pr .

After the practice network finishes its training, we initialize
the weights of the RL training network Θ

(0)
tr with the practice
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(a) Practice Network Architecture

(b) RL Training Architecture

Fig. 1: DQN network architecture for practice and RL training

network weights Θ(0)
pr . During the RL training, we collect

samples of st, at, at+1, reward rt+1 in a different replay
memory. Unlike practice, we collect reward values as well
for RL training and therefore a separate replay memory is
required. We randomly sample experiences from this memory
to train the RL training network. We use Huber loss for
training which is described as:

Lδ(yt, Qt) =

{
1
2 (yt −Qt)2 for |yt −Qt| ≤ δ
δ|yt −Qt| − 1

2δ
2 otherwise

(5)

where yt is the target output defined in Eq. 2 and Qt =
Qonline(st, at). δ is the control parameter which can be tuned.
We train the RL training network to minimize the loss using
RMSprop optimizer [15] for a duration of d(0)tr or until the
model converges, which ever occur first. This model is also
called as one-step practice as we perform practice once before
RL training.

B. Iterative Practice

Humans generally perform short cycles of practice followed
by an actual task which can be attributed to the limited
attention span we have. Moving back and forth from actual
task increases productivity compared to prolonged execution
of a single task [16]. Motivated by this human practice and
learning model, we propose a practice framework that iterates
over a short period of practice and a short period of RL
training until the model converges. Also, iterative practice fully
leverages the benefits of one-step practice and helps the agent
to learn quickly during the initial phase of RL training.

Figure 2 illustrates the stages in iterative practice comparing
to the one-step practice. The iterative model has two stages:
initial practice and iterative training. The initial practice is
similar to the practice stage in one-step practice and the
iterative training has cycles of short RL training and short
practice. In this framework, we use the same practice network
for initial practice and short cycles of practice. There aren’t
any modifications in the network architectures for practice and
RL training from Section III-A and are shown in Figure 1.

Fig. 2: Traditional Practice (top) vs. Iterative Practice (bottom)

For initial practice, we collect npr samples with random
actions, store it a replay memory, and use mini-batches of
these samples to train the practice network which estimates the
state difference ∆st. We use the mean squared loss (Eq. 3) to
measure the inconsistency between predicted and target state
difference. We train the practice network with Adam optimizer
for a duration of d(0)pr .

After initial practice, we transfer the weights of layers
Θ(0)
pr from practice network to the RL training network. This

initiates the iterative training stage. During the short RL
training we collect new experiences st, at, at+1, reward rt+1

and store them in a different replay memory. The following
short practice does not collect new data but uses the same data
collected from the replay memory used during initial practice.

We set the number of iteration be Niter, for which short RL
training and short practice are run. We train the RL training
network for a short duration of d(k)tr , k ∈ [1, Niter] where
d
(k)
tr � d

(0)
tr . We use Huber loss (Eq. 5) for training, which

is minimized using RMSprop optimizer [15]. We transfer the
trained RL training network weights Θ

(k)
tr to the practice

network weights Θ(k+1)
pr for short practice. The short practice

lasts for d(k)pr where d(k)pr � d
(0)
pr . Then we transfer the weights

from the practice network back to the training network. This
alternative transfer continues iteratively as follows:

Θ
(k)
tr ← Θ(k)

pr , (6)

Θ(k+1)
pr ← Θ

(k)
tr . (7)

This process continues for Niter iterations or until the model
converges. Here, we use the same short practice duration
(d(i)pr = d

(j)
pr ,∀i, j ∈ [1, Niter]) and the same short training

duration (d(i)tr = d
(j)
tr ,∀i, j ∈ [1, Niter]). Algorithm 1 summa-

rizes the short iteration of practice and target train.

IV. EXPERIMENTS

The efficiency and efficacy of extended practice for DQN
and iterative practice methods are tested on Visual Maze and
Atari game environments, shown in Figure 3. The perfor-
mances are compared to a base DQN model (without any
practice) which is designed to have a similar architecture and
parameters to the DQN model described in [4].
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Algorithm 1 Iterative Practice

Input the duration of initial practice d
(0)
pr , short practice

d
(k)
pr , and short target training d(k)tr

Initialize learning rate α, discounting factor γ
Collect practice npr samples with random actions.
for k ← 0, Niter do

Train practice network with npr samples for d(k)pr (Eq. 3)
Transfer weights from practice to target (Eq. 6)
Train target training network for d(k)tr (Eq. 5)
Transfer weights from target to practice (Eq. 7)

end for

A. Experimental Environments

a) Visual Maze: It is a navigation (8x8/16x16 blocks)
task where an agent starts from the start position (pink block)
and moves towards the goal position (green block) dodging
the walls (black blocks). Its has 4 actions, left, right, up and
down. A reward of −1 for each movement, −5 for hitting a
block or moving out of the maze, or +30 for reaching the goal
is given to the agent.

b) Pong: In this Atari game, the agent controls a green
paddle to bounce a ball back to the left towards the opponent.
The game has 6 possible actions. The reward is defined as
+1 if the ball goes past the brown paddle (bot controlled) to
the left and −1 if the ball goes past green paddle to the right,
which means +1 for the bot. The game terminates when either
the bot or agent gets 21 reward points.

c) Breakout: The objective of the game is to clear the
bricks at the top by hitting each brick with the ball. Here
the agent controls the paddle at the bottom. The game has 4
actions. The reward is defined as +1/+ 4/+ 7 if the ball hits
a brick (based on the color of brick). The game terminates
when paddle misses the ball and it goes out of the screen.

d) Freeway: The objective of the game is to make the
chicken cross the ten-lane highway from one side to the other
side. The chicken should avoid hitting the vehicles on the
highway. The player gets a point every time a chicken gets
across to the other side. If hit by a car, the chicken is forced
back slightly or entirely down. The player can score as much
as he can in 2 minutes 16 seconds. The game has 3 actions.

e) Boxing: The objective of the game is to score more
punches than the opponent/bot in a boxing match. The agent
controls a boxer who tries to land punches on the opponent and
at the same time escaping from his punches. Each punch gives
a reward point to the respective boxer. The game terminates
when either the agent or the bot get 100 reward points or when
time runs out. The game has 18 possible actions.

f) Tennis: The objective of the game is to win a six-game
set against a bot in a tennis match. The game terminates when
either the agent or the bot wins the six-game set. If the set
ends in a draw, the set restarts from 0-0. The game has 18
possible actions for the agent.

B. Experimental Setup

1) Practice for DQN: For the Visual Maze task, we train
the practice network for d(0)pr = 104 steps using mini-batches
of 50 samples from the practice replay memory. We consider
the weights of the three convolutional layers as Θ(0)

pr for
this task. After practice, we transfer the weights Θ(0)

pr to the
RL training network, and randomly initialize the weights of
the dense layers in RL training network (see discussions in
Section V).

We feed mini-batches of size 50 to the training network
which runs for d

(0)
tr = 300 episodes, with each episode

allowing a maximum of 500 steps for the agent to reach the
goal.

For Atari game environments, we train the practice network
for d(0)pr = 106 steps using mini-batches of 64 samples. Similar
to the Visual Maze task, we consider the weights of the three
convolution layers as Θ(0)

pr and transfer the weights to the
RL training network. We use mini-batches of size 64 for the
training network which runs for a maximum of d(0)tr = 2 ×
107 steps, but we perform early stopping if the training loss
converges approximately to zero. During the training, once the
agent reaches the end of a game, we record it as an episode and
record the accumulated reward for that episode as well. The
game is then reset to the start position for the next iteration.
There are no adjustments in the network architecture or hyper-
parameters for each Atari environment. While the exploration
rate (ε) for the agent in the base DQN model decays from
1.0 to 0.1 over the first million steps and 0.1 to 0.01 over the
remaining steps, in practice for DQN model, it decays from
1.0 to 0.1 over the first 6 × 105 steps and 0.1 to 0.01 over
the remaining steps. As the practice for DQN model already
learns features from practice and requires less exploration, we
bring the exploration rate down from 1.0 to 0.1 after fewer
number of steps compared to the base DQN model.

2) Iterative Practice: For the Visual Maze task, during the
initial practice stage, we train the network for d(0)pr = 104

steps with mini-batches of 50 samples from the practice replay
memory. For this task, we again consider the weights of the
three convolution layers as Θ(0)

pr . After practice, we transfer
the weights Θ(0)

pr to the target training network, but unlike
practice for the DQN model, here we lock the weights Θ

(0)
tr

after transferring from Θ(0)
pr , i.e. we do not perform any fine-

tuning of the weights during subsequent practice and training
(k ≥ 1). This is based on our observations from the practice for
DQN model which we present in our discussions (Section V).
For the iterative training, we only fine-tune dense layers and
transfer them between practice and training networks.

During the iterative training, we set the number of maximum
iterations to Niter = 20, short RL training duration to d(k)tr =
20 episodes, where each episode allows a maximum of 500
steps for the agent to reach the goal, and short practice duration
to d(k)pr = 103 steps. The size of mini-batches is set to 50 for
short RL training.

For the Atari environments, during the initial practice stage,
we train the network for d(0)pr = 106 steps with mini-batches of
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(a) Maze8 (b) Maze16 (c) Pong (d) Breakout (e) Freeway (f) Boxing (g) Tennis

Fig. 3: Test Environments

64 samples from. We consider the weights of the three convo-
lution layers as Θ(0)

pr . After practice, we transfer the weights
Θ(0)
pr to the target training network. For these environments,

we do not lock the weights Θ
(0)
tr , i.e. we fine-tune the weights

during subsequent training and practice.
For the iterative training stage, we fine-tune the weights

of both convolutional and dense layers, but we transfer only
the dense layers between the practice and training networks.
We ran some initial experiments to select optimum values for
the parameters Niter, d

(k)
tr and d

(k)
pr . We set the maximum

iterations to Niter = 70, but perform early stopping when
convergence is achieved. We perform short RL training for
d
(k)
tr = 3 × 105 steps followed by short practice for d(k)pr =

102 steps both with mini-batches of size 64. During the short
RL training, once the agent reaches the end of a game, we
record it as an episode and also record the accumulated reward
for that episode. The game is reset to start position for the
next iteration. Again, there are no adjustments in the network
architecture or hyper-parameters for each Atari environment.
In this model, we decay the ε from 1.0 to 0.1 over the first
5× 105 steps and 0.1 to 0.01 over the remaining steps.

C. Results

Figure 4a depicts the accumulated rewards earned from
training base DQN model, practice for DQN model and itera-
tive practice model on a simple 8x8 Visual Maze environment.
It shows that practice and iterative practice helps the agent to
learn the optimal policy quicker than the base DQN model.

The asymptotic performance, which is the overall perfor-
mance of a model after training, cannot be compared in this
environment, as the maximum possible reward is limited and
both the models achieved that value after training. Although
there is no significant improvement for iterative practice in
simple 8x8 Maze when compared to one-step practice, the
learning speed of iterative practice surpassed that of one-step
practice when the search space increased with changing the
maze to 16x16 (Figure 4b). Iterative practice converged at
zero after 50 episodes, which is much earlier than the other
two methods. It indicates that iterative practice improves the
performance of the agent over the one-step practice.

For Atari environments, we train the models for a large
number of episodes when compared to the Visual Maze
task and the reward after each episode is highly fluctuating.
Therefore, to better evaluate the performance of the agent,
we considered the mean reward for every 100 episodes as
an evaluation metric. Figure 5 depicts the accumulated mean

(a) Visual Maze (8x8)

(b) Visual Maze (16x16)

Fig. 4: Reward curve for iterative practice, practice for DQN and
base DQN method implemented on Visual Maze

rewards for base DQN, practice DQN and iterative practice in
Breakout, Pong, Freeway, Boxing and Tennis.

In Breakout, Freeway and Pong, practice for DQN and
iterative practice models reached the convergence value (blue
dotted) of base DQN model much earlier and both of them
converged at a higher value (orange dotted line) than that
of the base DQN model. This suggests that, in addition
to faster learning, practice also helps in achieving a better
asymptotic performance in these environments. Noticeably,
iterative practice model learned faster than the one-step prac-
tice model in Breakout. In Freeway, although there is an
initial dip in the performance of the iterative practice agent,
it recovered well enough to match the performance of the
one-step practice model. Whereas in Pong, iterative practice is
initially slower compared to one-step practice, but it eventually
achieved better asymptotic performance (green dotted line).
We attribute the initial lag in the performance of the iterative
practice model in Pong and Freeway, to the low complexity of
these environments, which confines the benefits of the iterative
practice model. By low complexity, we mean that it takes
fewer numbers of steps for any agent to learn an optimal
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(a) Breakout

(b) Freeway

(c) Pong

(d) Boxing

(e) Tennis

Fig. 5: Reward curve (Mean reward of 100 episodes) for iterative
practice method vs practice with DQN vs base DQN method on Atari
Environments.

policy in these environments compared to Breakout, Boxing
or Tennis. We also made a similar observation in the case of
8x8 Visual Maze.

In Boxing (Figure 5d), the performance of the practice
model initially trailed behind the base DQN model, but it even-
tually achieved better asymptotic performance at the end. In
Tennis (Figure 5e), however, practice for DQN model reached
the convergence value of the base DQN model (blue dotted
line) much earlier. In these environments, iterative practice
model clearly exceeded the performance of the other models.
In addition to faster learning, iterative practice also helped in
converging at a higher value in Boxing (green dotted line) and
Tennis (orange dotted line). We attribute this performance of
the iterative practice model to the relatively high complexity
of Boxing and Tennis environments (though Tennis has less
number of episodes, each episode take a very high number of
steps to complete, compared to Pong or Freeway), which we
also observed in 16x16 Visual Maze. It is evident that iterative
practice is promising and it has the potential to achieve better
results with further hyperparameter tuning.

V. DISCUSSIONS

A. Training Time

One of the goals of practice and iterative practice is to lessen
the training time required for the agent to learn a complex task.
Training time in transfer learning models is often evaluated
either as total time, which includes the time taken to train the
source task and time taken to train the target task, or target
task time, which only considers the time taken to train the
target task. For autonomous models like practice and iterative
practice, where human efforts are redundant, it is appropriate
to use target task time as the metric [7].

Besides, the practice network is trained for much less
number of iterations than the RL training network (about 20
times less number of iterations), so the impact of practice on
the overall training time is negligible. Thus, we consider the
time taken for the agents to learn a task using the knowledge
from the practice without being charged for the time spent
during practice.

From the experimental results, we observe that iterative
practice and practice DQN models achieve convergence after
lesser episodes than base DQN model. As an episode repre-
sents a game played from its beginning to end or until it is
lost, the number of episodes can be directly proportional to
the time taken for training. Thus, it indicates that the training
time required for iterative practice and practice DQN models
is lesser than the base DQN model. Furthermore, iterative
practice model need far less training time than the practice
DQN model in complex environments like Boxing and Tennis.

B. Observations of Shareable Representations

Improvement in the performance by practice with DQN
model is attributed to the shared knowledge from the practice
network transferred to the RL training network. To understand
the effect of practice on target RL training, it is important to
observe the shareable representations. For this, we visualized
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the outputs of the convolution layers and fully connected dense
(FC) layer, of both practice network and training network,
using activation heat maps and observed the similarity in the
activated areas of the images during practice and RL training.

Figure 6 shows the visualizations of filters of the third
convolutional layer, after practice and after RL training, for
Visual Maze task. We observed that the activations are mostly
identical, except for a few filters (marked in red). It indicates
that practice provides good perception knowledge for target
learning. So, the weights of convolutional layers of the RL
training network, when initialized with the practice network
weights, are less likely fine-tuned. However, in another obser-
vation we made, there is no significant similarity between FC
layer outputs after practice and after training. This motivated
us to propose an iterative model that helps training the FC
layer for further improvement as we achieved.

In case of the Visual Maze, we locked the convolutional
layers from the fine-tuning based on our observations of
shareable representation. But in case of Atari games, locking
the convolutional layers from fine-tuning did not produce
desirable results. This observation indicated us that, for Atari
games, where the state space is very large, fine-tuning of
convolutional layers is necessary.

Similar observations of shareable knowledge were previ-
ously made [17]. They showed that higher layers have general
or less specific features, while lower layers learn more specific
features of a task. In transfer learning, general features from a
source task assist the learning of a target task rather than spe-
cific features. In another work [13], up to three convolutional
layers were transferred between two different Atari games. The
authors compared the performance of the agent in the target
Atari, after transferring one, two and three convolutional layers
from the source Atari game. Among all the three transfers,
transfer of three layers had an edge over other transfers.

C. Model Learning from Practice?

We showed that combining practice with RL training helps
the RL training network to learn features faster than otherwise.
In a way, practice is preparing the learning and reusing it
during training to find an optimal policy. On similar lines,
Dyna-Q [18] is an algorithm which combines Q-learning with
planning. It learns a model while learning the value/policy for
a task. The model is improved during training and at the same
time used for planning the next state. Thus, Dyna-Q prepares
a model and uses it to improve RL training, unlike practice
which does not learn a model but only state transitions. Also,
preparation and improvement go parallel in Dyna-Q which
is not the case with practice. Another algorithm called Value
Iteration Networks [19] uses a differential planning module
to learn policies, embedded to a feed-forward neural network
which predicts the actions. The planning module uses value
iteration to compute optimal policy using reward function and
transition probability, which is used by the neural network to
output the probabilities for possible actions.

On similar lines, another approach uses auxiliary losses [20]
to improve the agent performance in a task. This approach

(a) Practice

(b) RL training

Fig. 6: Visualizing activations for the last convolutional layer in
practice and RL training networks for an intermediate state in the
Visual Maze environment

considers learning the RL task by augmenting the loss of
RL training with losses from auxiliary tasks. The auxiliary
tasks are chosen in such a way that they support navigation or
planning of agent in the environment and thus they help the
agent get richer training signals for RL task. Unlike practice,
the agent is jointly trained on goal-driven RL problem and
auxiliary tasks.

All the aforementioned approaches are similar to the prac-
tice in perspective that they prepare the learning and use it in
improving RL training. Significant difference and contribution
of our suggested practice approaches lie in the efficient feature
learning in an RL task through the transfer of knowledge from
a non-RL task.

D. Generalization through Iterative Practice

Human’s ability to adapt to new, unseen situations and
environments can be attributed to the generalized represen-
tations of the world that we have. On the other hand, RL
algorithms are generally trained and tested in same or similar
environments and thus they fail to learn representations that
can generalize to unseen situations. This can have serious
implications when RL is applied to real-world systems

Generalization is a familiar notion used in deep learning
architectures. Dropout regularization [21], which is known as
generalization technique in deep learning models, reduce the
co-complex adaptations or specialization of the weights of the
network to specific features. This reduces the overfitting of
the model to the training data. L1, L2 regularization [22] also
helps in reducing the complexity in the model and solves the
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overfitting problem. Similar methodologies are required for RL
to improve generalization. Robust adversarial reinforcement
learning (RARL) [23] helps the agent to learn generalized
policies as the method is robust to differences in training
and test conditions. It uses an adversarial agent to impede
disturbances to the RL agent, which makes the RL agent learn
robust policies.

Although iterative practice method is quite different from
RARL, it can serve the purpose of providing a generalization
to RL agents as well. As discussed above, prolonged RL
training tunes the hidden weights to specific features of the
task, which happens in base DQN and practice for DQN
models. But, the iterative model prevents this by shifting from
RL training to practice and vice versa periodically. We see this
as an interesting aspect of iterative practice which needs to be
investigated further with suitable experiments.

VI. CONCLUSIONS

In this work, we suggested an efficient way to train an
end-to-end deep reinforcement learning model by leveraging
practice to reduce the learning time and to find an optimal
policy for the maximum expected rewards. Also, we proposed
and examined the efficacy of a novel practice strategy called
iterative practice. Our experiments showed that iterative prac-
tice is a promising approach for improving the performance
of the agent over the one-step practice. We also discussed
the possible reasons for the success of practice with DQN
by presenting our observations of the abstract knowledge
representations in the deep neural networks after practice and
after RL training.

Examining the adaptability of practice and iterative practice
framework in other deep reinforcement learning algorithms
and experimenting on diverse environments is a natural next
step. As discussed in Section V-D, this research can be
extended to understand the generalization provided by the iter-
ative practice. Also, leveraging iterative practice in developing
meta-learning models for reinforcement learning can be an
interesting direction for future research.
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