
Relevant Experiences in Replay Buffer
Giang Dao and Minwoo Lee

Department of Computer Science
University of North Carolina at Charlotte

Charlotte, NC 28223
Email: gdao@uncc.edu, minwoo.lee@uncc.edu

Abstract—The sampling bias problem creates instability in
reinforcement learning. Reusing past experiences with experience
replay helps reinforcement learning overcome possible sampling
bias. After the success of deep reinforcement learning, other
variations of experience replay have been proposed and fur-
ther improved learning performance. However, how to select
samples to store in experience replay methods has not been
well investigated. In this paper, we examine if there exists
relevant (or significant) experiences to be preferably replayed.
For systematic discovery of relevant experiences, we adopt the
DRL-Monitor and discuss how it improves the efficiency of
learning. Comparing with traditional experience replay and
prioritized experience replay, we demonstrate improved learning
performance in different Atari games.

Keywords—Reinforcement learning; sparse Bayesian reinforce-
ment learning; relevant experiences; replay buffer.

I. INTRODUCTION

Recent advances in deep reinforcement learning have solved
a lot of different applications. There are a lot of methods
have been built to solve world challenging problems such
as robotics [3], allocating cloud computing resource [12],
advertisement technology [21], and finance [5]. Reinforce-
ment learning agent, however, learns from trial-and-error in
an environment. This includes sequential data sampling that
results in a high correlation between two consecutive data,
which are affected by the action taken from the previous
state. The lack of independence in distributions for training
data breaks an assumption of many stochastic gradient descent
algorithms. Furthermore, learning from new experience causes
forgetting previously learned optimal policies. These were the
main issues in traditional reinforcement learning that cause
instability [15].

Experience replay [11; 16] stores past experiences in mem-
ory and replays some of them by randomly sampling from
a uniform distribution. This breaks the direct correlation
in training data and simulates independent distribution for
gradient descent updates. Simply storing all experiences also
prevents possible forgetting problems. Experience replay also
improves the data efficiency [20], which suits many different
RL algorithms. Deep Q-Network (DQN) [14] has shown the
stability of the training process by using experience replay.

After the success of DQN, a fairly large amount of memory
seems to be necessary for the experience replay (replay buffer)
[14; 10; 1]. Without any justification of the size of the replay
buffer, a lot of followup research adopts the heuristically

determined size for the memory. However, storing all the ex-
periences and then sampling some from uniform distributions
is not the most effective way to use a replay buffer. Thus,
it requires investigation on the design of a replay memory:
storing problem of which experiences to store and replaying
problem of which one to replay [15].

Recent research focuses on the replaying problem to im-
prove the efficiency of experience replay: most notably, Prior-
itized Experience Replay (PER) [15], Hindsight Experience
Replay (HER) [1], and Distributed Prioritized Experience
Replay (DPER) [7]. PER modifies the traditional experience
replay whereby instead of uniformly choosing experiences
from replay buffer, the agent is more likely to sample ex-
periences with higher temporal difference error. HER realizes
sample augmentation in order to overcome the rare relevant
(reaching goal trajectories) experiences problem with virtual
goals and shows much improved performance on learning.
For an environment that multiple agents learn asynchronously,
DPER adopts PER in distributed learning framework for effi-
cient learning. These approaches make advances on efficient
replaying, eventual effective learning, but the storing problem
is not so far addressed.

In this paper, we suggest a simple, but novel method,
Relevant Experience Replay (RER), as an initial step to
solving the storing problem. RER adopts DRL-Monitor [4]
to identify important experiences to tag them as “relevant.”
DRL-Monitor, attached to a DRL agent, learns a policy
developed by the agent by observing the learning process and
collecting important moments to understand the rationale of
the agent’s decision making. When DRL-Monitor tags some
samples as relevant or important, a replay buffer contains both
the relevant samples and irrelevant samples. DRL samples
from this mixture with a certain ratio and we examine the
quality of relevance tagging for learning. This requires a slight
modification on the DRL algorithms’ sampling module. Our
experiments show the efficacy and efficiency of the use of
relevant samples identified by DRL-Monitor in 11 different
Atari game environments.

Our main contributions in this work include a framework
that identifies relevant experiences to improve, which are
critical moments of the agent environment interaction, and
enforces them to be replayed. This leads to the empirical
evaluation of the quality of the proposed relevant experience
selection module to tackle the storing problem in a replay
buffer in the future.

2019 IEEE Symposium Series on Computational Intelligence (SSCI)
December 6-9 2019, Xiamen, China

978-1-7281-2484-1/19/$31.00 ©2019 IEEE 93

In Section II, we outline the backgrounds for the proposed
work. The proposed relevant experience replay is introduced in
Section III, and the results of applying our method in different
Atari games are presented in Section IV. We draw conclusions
in Section V.

II. BACKGROUND

A. Reinforcement Learning

A reinforcement learning (RL) problem consists of an agent
interacting with an environment. The agent perceives a state
st from the environment and performs an action at to the
environment. The environment returns the next state st+1 as
well as a corresponding reward of the state and action pair rt.

Through the learning process, the agent provides a policy π
that maps states to actions such that: π : S → A. At time step
t, action at is taken based on the current policy π and state
st: at = π(st). The agent receives reward rt and perceives
st+1 to continue the learning process.

The return is computed with the sum of discounted future
rewards Rt =

∑T
i=t γ

i−tri where γ ∈ [0, 1] and T is the
timestep that the environment terminates. An action value (Q-
value) function is used for estimating the expected given state
and action pair return: Q(st, at) = E[Rt|st, at]. The agent
learns by trying to maximize the expected returns using the
Bellman equation:

Q∗(st, at) = Est+1∼ε

[
r(st, at) + γQ∗(st+1, at+1)

]
where Q∗ denotes the optimal Q-value function.

To balance the exploration and exploitation, a near-greedy
method, ε-greedy, is developed. The method explores the space
by uniformly sampling an action from A with a probability
of ε, and independently take a greedy action (highest Q-value
estimation) with a probability of 1− ε.

B. Deep Q-Network

Deep Q-Network (DQN) is one of the deep reinforcement
learning (DRL) algorithms, which learns from interaction be-
tween an agent and an environment. DQN uses convolutional
neural networks to map raw images into Q-values for a set of
discrete actions.

At each time step, from the interaction, a state experience
tuple (si, ai, ri, si+1) is stored into an experience replay
buffer. Randomly sampled training data from the replay buffer
provide an identical and independent distributions for training
the DQN. Thus, it helps avoid possible sampling bias to
improve learning performance.

To improve the stability of learning, when approximating
Q∗-values, DQN uses two deep neural networks, online net-
work Qonline(st, at) and target network Qtarget(st, at). The
online network is trained using mini-batch gradient descent
where the target:

yt = rt + γmax
a∈A

Qtarget(st+1, a).

The mean squared loss can be set up as:

L =
(
yt −Qonline(st, at)

)2
.

Fig. 1: An example function f(x) = 10sinc(x) + N (0, 0.5) of
applying the relevant vector machine [17] to indicate relevant samples
where the blue dots are the data and red dots are relevant samples
after trained. Only using the red dots with learned parameters, the
method can approximate the true function (green dots) of the noisy
data.

The target neural network is identically structured as the
online network. The weights of Qtarget are periodically update
with the weights of Qonline. Thus, the Qtarget changes
the estimation of Q values slower than the Qonline. [14]
empirically showed the improved stability and performance
of this structure in Atari games.

Double Deep Q-Network (Double DQN) [19] extends the
DQN. Double DQN computes the target value yt by using the
both online and target networks as follows:

yt = rt + γQtarget
(
st+1, argmax

a∈A
Qonline(st+1, a)

)
Target values are estimated by target network with greedy
action from online network. The authors observed further
improved performance with Double DQN in their experiments.

C. DRL-Monitor

We shows an example of the sparse Bayesian learning
method in Fig. 1. The method is capable of extracting im-
portant samples as basis and serves to reconstruct the origi-
nal function. Sparse Bayesian reinforcement learning (SBRL)
[9; 13] is a development of the method to solve complex
reinforcement learning problems.

Combining DRL with SBRL, DRL-Monitor [4] records
significant experiences during training. Using the recorded
experiences, DRL-Monitor explains what an RL agent learns,
how the agent builds up it knowledge, and how it can be related
to new environment for exploitation.

DRL-Monitor adopts a kernel-based method, sparse
Bayesian learning [17]. The monitor re-approximates DRL
to extract meaningful experiences for explaining the learning
processes and the learned policies. When approximating DRL,
the monitor assumes the target Q-values is a weighted sum of
the feature vectors with some noise ε such that:

Q = Φw + ε

94

where ε is a zero-mean Gaussian noise with variance σ2

suggested by [18] as:

σ2 = 0.1× var(Q).

α, a set of hyper-parameters controlling the strength of
the prior over the corresponding weights, is set to be infinity
except for one starting

αi =
||φi||2

||φ>i Q||2/||φi||2 − σ2
.

The mean and standard deviation of the weights distribution
with are computed as:

Σ = (αI + σ−2Φ>Φ)−1 and µ = σ−2ΣΦ>Q.

α, σ2, Σ, and µ is iteratively re-computed based on sparsity
and quality factors. The algorithm runs until it reaches a
certain iteration or a convergent condition is met. The relevant
experience is retrieved by tracing the bases left in the model.

III. RELEVANT EXPERIENCE REPLAY

The suggested model leverages DRL-Monitor to systemat-
ically select important experiences to tag as relevant experi-
ences for replay. We replay samples from the mixture of the
tagged “relevant” experiences with other irrelevant experiences
for efficient training as shown in Fig. 2.

Algorithm 1 Relevant Experience Replay (RER)

1: Input: batch size b, training period Ktrain, monitoring
period Kmonitor, total step T , relevant replay ratio c ∈
[0, 1].

2: Initialize a replay buffer memory M
3: Observe an initial state s0
4: for t = 0 to T − 1 do
5: Get action at from st through policy π(st)
6: Execute at and collect reward rt
7: Initialize ft = 0 and check terminal dt
8: Store experience et = (st, at, rt, dt, ft) in M
9: if t mod Kmonitor = 0 then

10: Retrieve Kmonitor previous experiences from M
11: Extract p, a, and Q-values
12: Normalize p using Eq.(2) and map a
13: Monitor the DRL agent
14: Modify tagging flag f with Eq.(1)
15: end if
16: if t mod Ktrain = 0 then
17: Empty the batch memory B
18: R← relevant experiences with ft = 1
19: I ← irrelevant experiences with ft = 0

20: Sample c× b of e(r)t from R and add to B
21: Sample (1− c)× b of e(i)t from I and add to B
22: Perform one step gradient update with B
23: end if
24: end for

A. Training DRL-Monitor

DRL-Monitor answers to the question of what to store
during replaying experiences. DRL-Monitor observes a DRL
agent’s learning progress in a training environment and its
application of a learned policy in test environments. From
training, the agent tunes the neural network weights to produce
Q values for appropriate actions to take. Encoded state repre-
sentation is developed through multiple neural network layers
(i.e. convolutional and fully connected layers). We refer this
encoded state vector from the fully connected layer before the
output layer as perception. Observation of DRL enables DRL-
Monitor to recognize important samples from remembered
frame images, actions, and rewards.

When the monitor considers all data samples as relevant ex-
periences, the model will be identical to traditional experience
replay. This can be avoided by discarding similar samples.
To prevent memorizing any possible similar experience, DRL-
Monitor measures the similarity by using kernel function. For
simplicity, our initial model defines a product kernel of Radial
Basis Function (RBF) kernels to measure the similarity of both
perceptions and mapped actions as:

k
(
(p,a), (pi,ai)

)
= ks(p,pi)× ka(a,ai).

The product kernel is also used for training DRL-Monitor
to construct sparse bases to approximate the DRL Q function
space [4]. The bases built in the monitor are the key data
samples capable of estimating any representation that a DRL
agent can make. Thus, we treat the kernel bases as the relevant
experience to replay for efficient learning.

B. Tagging Relevant Experiences

We assume the data in the replay buffer is sequential
presentation similar to taking state after state in the simulation.
A single experience sample et in a replay memory can be
represented as et = (st, at, rt, dt, ft) where the boolean
terminal state indicator dt tells whether the state st is terminal
or not, and a boolean tagging flag ft tells the relevance. Then,
the experience replay buffer M = [e1, . . . , eNm

] where Nm is
the number of stored experiences.
ft is initialized as zero for every new experience comes into

the replay buffer. After finishing DRL-Monitor training, α, the
set of hyper-parameters controlling the strength of the prior
over the corresponding weights, tells the significance samples
among the constructed bases. Corresponding ft’s are marked
as 1:

ft =

{
1 if αt <∞
0 otherwise. (1)

With this implementation, all relevant experiences are tagged
with value ft = 1, and other irrelevant experiences are tagged
with value ft = 0 in the replay buffer.

C. Replaying Experiences

For informed random sampling with relevance tagging, we
sample a training batch which concatenates a portion from a
relevant experience set with another portion from the other
irrelevant experience set. A batch size b and a ratio c ∈ [0, 1]

95

Fig. 2: Relevant experience replay framework with DRL-Monitor. DRL-Monitor identifies and tags relevant experiences in a replay buffer.
With a sampling ratio paramemter, a certain ratio of relevant experiences are guaranteed to be replayed for DRL training.

are pre-defined for a mixture of the two types of experiences.
The ratio c = 1 replays the relevant experiences only and
c = 0 replays the irrelevant ones only.

The relevant experience set R = {et|et ∈ M,ft = 1}
is retrieved from the memory using the tagging ft, and the
irrelevant set I = {et|et ∈M,ft = 0}. Concatenating the two
sets, a batch B draws a total of b samples from the memory
to train the DRL agent:

B = [e
(r)
t , e

(i)
t]

e
(r)
t ∼R,e

(i)
t ∼I

where |e(r)t | = c ∗ b and |e(i)t | = (1− c) ∗ b.
With this strategy, we enforce a certain proportion of

relevant experiences to be replayed in every training step. The
process of monitoring and training DRL agent with RER is
summarized in Algorithm 1.

D. Normalize Perception

The perception is output of an activation function, Paramet-
ric Rectifier Linear Units (PReLU) [6] in this case. Therefore,
the distribution of the perception on each dimension is not
consistent for kernel similarity measurement. Therefore, we
incrementally apply a standard normalization on each dimen-
sion of the perception in order to stabilize the similarity
computation.

The perception is normalized with information from all
previously seen perceptions but without storing actual percep-
tions. The normalization method accumulates the total number
(Np), the sum (psum), and the sum of squared (p2sum) of all
the perceptions observed at time t and a set of current Nt
perceptions pt as:

Np = Np +Nt
psum = psum +

∑
p∈pt

p

p2
sum = p2

sum +
∑
p∈pt

p2.

The mean and standard deviation are computed as:

µ =
psum

Np
and σ =

√
p2
sum − 2 ∗ psum ∗ µ

Np
+ µ2.

With the accumulated normalization, the perception p is
standardized to p̃ as:

p̃ =
p− µ
σ

. (2)

IV. EXPERIMENTS

A. Experiment Setup

We examine the quality of the relevant experience replay
with one of the state-of-the-art DRL algorithms, Double DQN
[19]. All tests were run with the same training configuration
for all the Atari game environments. We compare the perfor-
mance of RER with Double DQN with two baselines, vanilla
Double DQN that uses traditional experience replay and the
one that uses prioritized experience replay.

a) Neural Networks: We slightly modified the architec-
ture of Double DQN. We replaced the activation function
to PReLU for both baselines and RER experiments. For
computational efficiency, we use 256 hidden units in the last
hidden layer.

b) Hyper-parameters: The discount factor γ is set to
0.99, and the learning rate is set to 10−4. The number of steps
between target network updates is 10, 000. We are optimizing
the loss for DRL training with Adam optimizer [8]. All
gradients are clipped between a range of [−10, 10] to prevent
gradient explosion problem when one gradient is too high or
low.

The agent evaluates policy every 100K simulation steps and
reports the average of the total reward from 30 episodes with
random no-op actions from 1−30 at the beginning of the game.
By given random starting states, the agent has more robustness
and generalization as the agent cannot rely on repeating a
single memorized trajectory. The same random no-op action
strategy is applied to the training phase as well. The mini-batch
of b = 64 training samples are collected every Ktrain = 4
steps. The agent runs T = 12 million simulation steps.

The monitor is trained every Kmonitor = 256 steps to
ensure the monitor is up-to-date with the current policy. The

96

(a) (b) (c)

(d) (e) (f)

(g) pic3. (h) (i)

(j) (k)

Fig. 3: Learning curves (average total reward of 30 episodes) for Double DQN with traditional experience replay in red, prioritized experience
replay in blue, and relevant experience replay in green. Each curve corresponds to a single training run 12 million simulation steps.

gamma of perception and action for RBF kernel are set to
γp = 0.35 and γa = 1.0 correspondingly.

To ensure rich exploration, we use ε-greedy with linearly
decreasing ε from 1 to 0.1 for 1M simulation steps, from 0.1
to 0.01 for the next 5M simulation steps, and constantly 0.01
after that.

c) Environment: We tested randomly selected 11 dif-
ferent Atari game environments: Boxing, Breakout, Double
Dunk, Enduro, Freeway, Ice Hockey, MsPacman, Pong, and
Tennis. The environments are in NoFrameskip-v4 version from
OpenAI Gym [2], which is similar environment done in [14].
We use a similar environmental setup to [14] except that the

97

terminal state gets the reward of −1 instead of 0 if the reward
was initially 0, which indicates the agent lost of life.

d) Replay Buffer: Due to high memory usage and com-
putation time for experience replay, we use a buffer with the
size Nm = 104 for traditional experience replay, PER and
RER to perform comparison. This will simulate the cases
of how experience replay affects learning performance in
complex problems that require large replay memory. The
replay ratio c is set at 0.5 for balancing relevant and irrelevant
experiences.

B. Empirical Results

Fig. 3 shows the raw average total rewards over 12 million
steps of training time. In the presented nine Atari game exper-
iments, relevant replay buffer shows improved performance,
comparing to the traditional replay buffer and PER. Replaying
with 50% (c = 0.5) of relevant experiences achieves faster
learning speed (shorter time to reach the optimum) and higher
asymptote (better solution with higher scores).

The RER does not immediately show an improvement in
the early stage of the training because the agent needs to
build up correct perception mapping through the convolutional
layers. When the perception has been well established, the
DRL-Monitor is capable of tagging the relevant experiences
correctly to improve the agent’s learning.

The efficiency of RER is established after the perception is
well-formed. The process of formation typically takes 400K
steps. The result in Fig. 3 shows a better improvement after
400K steps of RER compared to traditional experience replay
and PER. The speed of learning curve is also improved with
RER to reach a higher score.

Boxing, Breakout, Enduro, Ice Hockey, and Tennis show
the improvements in term of learning speed after a well-
established perception in Fig. 3. In Freeway and Pong, the
problems are too simple to achieve further improvement in
learning speed, but the RER does not slow down learning and
achieves the equivalent learning speed and performance. In
other environments, RER performs at least equivalent to or
slightly better than traditional experience replay and PER due
to the hardness of the problem with 104 buffer size.

In Fig. 4, we directly compare the trained agent with
relevant experience replay with the two other baselines to
see how much the proposed method improves quantitatively.
The normalized improvement score of RER to traditional
experience replay is computed comparing them with base
human score as in [14]:

scorer =
scorerelevant − scorehuman
scoretraditional − scorehuman

. (3)

This score tells how much better performance can be achieved
by replacing traditional experience replay with relevant expe-
rience replay.

We also measure the traditional experience replay with PER
using a similar metric formula. However, if the PER score is
less than a human score, we reverse the formula and apply

Fig. 4: Normalized improvement score comparison between RER,
PER, and traditional experience replay in 11 different Atari game
environments.

absolute value in the case of different sign when the human
score is in between traditional experience replay and PER:

scorep =
∣∣∣ scoretraditional − scorehuman|scoreprioritized − scorehuman|

∣∣∣. (4)

We observed a significant percentage improvement by ap-
plying relevant experience replay with an average increased of
47% across 11 Atari games that we evaluated. Notably, RER
achieves higher improvements especially when the complexity
of an environment grows. Fig. 4 depicts the comparison of the
normalized scores in each Atari game with three comparison
benchmarks after 12M simulation steps.

We observed a significant improvement in games where the
immediate reward has both directions (negative and positive).
They are shown with Boxing, Robotank, and Tennis envi-
ronments. Pong and Freeway achieved maximum long term
reward (thus the optimal policy), so they did not discover any
better solution (or policy).

One directional immediate reward (only positive) also
showed a noticeable improvement in Breakout, Enduro, and
MsPacman. As we observe in Pong, exposure to too many
irrelevant experiences results in instability of learning with
traditional experience replay. The instability of Pong is shown
by the red curve not always gets the maximum score 21.

Double Dunk and Fishing Derby are hard games for our
agent with the environment setup of 104 buffer size. Therefore,
RER was able to learn a slightly better solution than the one
with traditional experience replay.

We also observed poor performance with the prioritized
experience replay when we limit the size of the replay buffer.
The performance decrements happen because of the gradient
clipping. The probability of an experience to be drawn in PER
depends on the temporal difference error. Therefore, when the
gradient is clipped, the temporal difference error of a high error
experience changes slowly. That makes the probability of the
high error experience reduces slower. The buffer size of 104

is also not an ideal buffer size for PER. Since PER depends
too much on the temporal difference error, small buffer size
gets important experiences being pushed out faster. These two

98

(a) (b)

Fig. 5: Average and variance of 5 experiments on Boxing and Enduro environments. The color scheme is same as in Fig. 3 (traditional
experience replay in red, prioritized experience replay in blue, and relevant experience replay in green).

reasons make PER sometimes performs worse than traditional
experience replay. Especially the latter reason reveals the
limitation of PER when the replay memory size is limited or
when the environmental changes or complexity requires larger
replay memory.

Fig. ?? show that mean and variance of learning perfor-
mance in Boxing and Enduro environments for 5 runs. Because
of limited computation resources, we were only able to fully
run in these two environment. Small repetitions, however,
show the similar trend to these results and previous results.

As we discussed before, we were able to observe the
significantly improved asymptotic performance p << 0.05
from one-way ANOVA (p are 8.4 × 10−5 and 0.0012 in
Boxing and Enduro respectly) in the two environments. Also,
when we prioritize the experience (in green and blue curves),
we can observe improved stability of learning learning while
prioritized experience can be misguided when enough memory
is not provided.

V. CONCLUSION

Experience replay has been one of the major components in
reinforcement learning. There has been a number of techniques
proposed to improve the data efficiency and stability learning
for the experience replay. The process of determining relevant
experiences is very important for storing problem in experi-
ence replay to mimic the psychological information processing
from a human that remembers only relevant experiences when
tackling a problem.

In this work, we introduced a simple, but novel method
called Relevant Experience Replay that leverages DRL-
Monitor to identify relevant experiences. The proposed ap-
proach examines the efficacy of DRL-Monitor as a tool for
the decision-making problem of which experiences to store for
experience replay. The empirical results verify the proposed
approach. That is, DRL-Monitor is capable of identifying
significant experiences to construct memory-efficient and ef-
fective experience replay model.

The proposed relevant experience replay is compatible with
other DRL algorithms. Also, RER can be combined with HER
and PER and is expected to further improve the learning
performances. It will be natural next step for us to investigate
the storing problem to realize a small experience replay buffer
only with significant experiences based on DRL-Monitor’s
identification.

VI. ACKNOWLEDGEMENT

This work was supported, in part, by funds provided by the
University of North Carolina at Charlotte. The Titan Xp used
for this research was donated by the NVIDIA Corporation.

REFERENCES

[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight
experience replay”, In Advances in Neural Information Processing
Systems 30, pages 5048–5058. Curran Associates, Inc., 2017.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI gym”, arXiv preprint arX-
iv:1606.01540.

[3] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning”, In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 1343–1350, 2017.

[4] G. Dao, I. Mishra, and M. Lee, “Deep reinforcement learning monitor
for snapshot recording”, In 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 591–598. IEEE,
2018.

[5] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading”, IEEE
transactions on neural networks and learning systems, 28(3):653–664,
2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification”, In
Proceedings of the IEEE international conference on computer vision,
pages 1026–1034, 2015.

[7] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience
replay”, arXiv preprint arXiv:1803.00933, 2018.

[8] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

[9] M. Lee, “Sparse Bayesian Reinforcement Learning”, PhD thesis, Col-
orado State University, 2017.

99

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Hess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning”,
Foundations and Trends R© in Machine Learning, 2(1):1–127, 2016.
ISSN 1935-8237. doi: 10.1561/2200000006.

[11] L.-J. Lin, “Self-improving reactive agents aased on reinforcement learn-
ing, planning and teaching”, Machine Learning, 8(3):293–321, May
1992. ISSN 1573-0565. doi: 10.1007/BF00992699. URL https:
//doi.org/10.1007/BF00992699.

[12] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning”, In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
pages 372–382. IEEE, 2017.

[13] I. Mishra, G. Dao, and M. Lee, “Visual sparse Bayesian reinforcement
learning: A framework for interpreting what an agent has learned”, In
2018 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1427–1434. IEEE, 2018.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning”, Nature, 518(7540):529–533, 2015. ISSN
14764687. doi: 10.1038/nature14236.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay”, arXiv preprint arXiv:1511.05952, 2015.

[16] R. S. Sutton and A. G. Barto. “Reinforcement learning: An introduction”.
MIT press, 2018.

[17] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine”, Journal of Machine Learning Research, 1:211–244, 2001.
ISSN 15324435. doi: 10.1162/15324430152748236.

[18] M. E. Tipping, A. C. Faul, et al., “Fast marginal likelihood maximisation
for sparse Bayesian models”, In Proceedings of International Conference
on Artificial Intelligence and Statistics (AISTATS), 2003.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning”, In AAAI, volume 16, pages 2094–2100, 2016.

[20] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay”,
arXiv preprint arXiv:1611.01224, 2016.

[21] J. Zhao, G. Qiu, Z. Guan, W. Zhao, and X. He, “Deep reinforcement
learning for sponsored search real-time bidding”, arXiv preprint arX-
iv:1803.00259, 2018.

100

https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699

