
Convergent Reinforcement Learning Control with Neural Networks
and Continuous Action Search

Minwoo Lee1 and Charles W. Anderson2

Abstract—We combine a convergent TD-learning method and
direct continuous action search with neural networks for function
approximation to obtain both stability and generalization over
inexperienced state-action pairs. We extend linear Greedy-GQ
to nonlinear neural networks for convergent learning. Direct
continuous action search with back-propagation leads to efficient
high-precision control. A high dimensional continuous state and
action problem, octopus arm control, is examined to test the
proposed algorithm. Comparing TD, linear Greedy-GQ, and
nonlinear Greedy-GQ, we discuss how the correction term con-
tributes to learning with nonlinear Greedy-GQ algorithm and
how continuous action search contributes to learning speed and
stability.

I. INTRODUCTION

Temporal difference (TD) learning is a key method in
reinforcement learning for solving Markov Decision Processes
(MDPs). Without waiting for the final returns, TD methods
learn from incomplete sequences of interactions with an en-
vironment. This makes TD applicable to various problems
such as real-time adaptive control. A common problem in
reinforcement learning on continuous actions and states is that
there are an infinite number of state and action pairs; successful
control often requires fine discretization, but this can result in
the need for a prohibitive amount of experience [17].

To overcome the lack of experience in practical reinforce-
ment learning tasks, an agent must be able to generalize
based on limited experience. To do so, Q-values must be
approximated using parameterized representation. Represent-
ing Q functions with function approximations, such as neural
networks, has been successfully applied on various problems,
especially in robotics such as navigation control [6], [10], robot
walking [2], and robot soccer [18], [19]. The value function
can be either linear or nonlinear, and it can be differentiable.

High-precision control with continuous actions that have
the highest Q value can solve the real-world problems effi-
ciently. Several studies have shown that continuous actions
allow the solution of problems that are impossible to solve with
coarse discretization of action space. To cover all important
actions, expensive fine discretization is required. Without using
fine discretization, previous studies proposed alternative ways.
From a finite set of actions, some researchers obtain real-
valued actions by interpolating discrete actions based on the
value functions. Millan, et al., [15] sample real-valued actions
from neighbors incrementally based on the approximated value
function. Hasselt, et al., [24] select actions that have the highest

1Minwoo Lee is a Ph.D student in the Department of Computer
Science, Colorado State University, Fort Collins, CO 80523, USA
lemin@cs.colostateedu

2Charles W. Anderson is a faculty of the Department of Com-
puter Science, Colorado State University, Fort Collins, CO 80523, USA
anderson@cs.colostate.edu

Q value from the interpolator. Lazaric, et al., [3] use Sequential
Monte Carlo (SMC) methods, which resample real continuous
actions according to an importance sampling.

In addition to the use of real-valued actions, solutions
to real-world problems also require stability in performance.
Many popular TD algorithms, when combined with nontabular
function approximation, diverge; Baird [1] and Tsitsiklis and
Van Roy [23] show that learning parameters can go to infinity.
Only linear function approximation with on-policy learning,
for which samples are drawn from the current behavior policy,
is known to be stable [20], [22], [23]. There is no guarantee of
convergence when combined with nonlinear function approx-
imation in on-policy learning.

Without sampling from the evaluated policy, in off-policy
learning, an agent learns policies different from the one being
executed. Off-policy learning can be applied on many applica-
tions since it can learn an optimal policy while executing an
exploratory one, learn from demonstrations, and learn multiple
tasks in parallel [5]. Instability of off-policy learning, however,
has been a major issue. Sutton, et al., [21] first theoretically
showed the convergence of off-policy temporal difference
algorithm such as GTD, GTD2, and TDC, whose time and
memory complexity are linear with the number of features
in the function approximation. Maei, et al., [13] extend this
approach to nonlinear function approximation and Maei, et
al., [14] propose the first convergent TD learning algorithm
for off-policy control with linear function approximation.

In this paper, we bring together key contributions to tackle
the hard problem of learning to control a simulated octopus
arm. In particular, we extend the theoretical work of linear
Greedy-GQ to nonlinear neural networks and perform contin-
uous action search by using Scaled Conjugate Gradient (SCG)
[16].

This work is organized as follows. Section II presents a
summary of MDPs, reinforcement learning, and recent work
on convergent off-policy Q learning method, Greedy-GQ al-
gorithm along with the notation. For clear notation, matrices
are written in bold, and all the other variables are column
vectors except scalars 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖. Section III derives
the nonlinear Greedy-GQ algorithm for neural networks and
derives the gradient update for continuous action search with
back-propagation. In Section IV, after examining how the
correction term in Greedy-GQ affects learning, we present
the empirical results to demonstrate the stability of continu-
ous nonlinear Greedy-GQ with an octopus arm experiment.
Finally, in Section V, main conclusions about this research
are presented, and some possible directions for future work
are discussed.

978-1-4799-4552-8/14/$31.00 ©2014 IEEE978-1-4799-4552-8/14/$31.00 ©2014 IEEE

II. TEMPORAL DIFFERENCE LEARNING AND GREEDY-GQ

As developed in dynamic programming and Monte Carlo
methods, Temporal difference (TD) learning uses bootstrap-
ping to update the value estimates. A Markov decision process
(MDP) is defined as a tuple (𝑆,𝐴, 𝑃 𝑎

𝑠𝑠′ , 𝑅, 𝛾), where for each
time step 𝑡 = 0, 1, 2, ⋅ ⋅ ⋅ , with probability 𝑃 𝑎

𝑠𝑠′ , action 𝑎𝑡 ∈ 𝐴
in state 𝑠𝑡 ∈ 𝑆 transitions to state 𝑠𝑡+1 = 𝑠′ ∈ 𝑆, and the
environment emits a reward 𝑟𝑡+1 ∈ 𝑅. The value function 𝑉 𝜋

for a policy 𝜋 : 𝑆 → 𝐴 is defined as:

𝑉 𝜋(𝑠) = 𝔼[
∞∑
𝑡=0

𝛾𝑡𝑟𝑡+1∣𝑠𝑡 = 𝑠, 𝜋],

where 𝛾 is a discounting factor. The value function satisfies
the following Bellman equation:

𝑉 𝜋(𝑠) = 𝑇𝜋𝑉 𝜋(𝑠) = 𝑅𝜋(𝑠) + 𝛾𝑃𝜋𝑉 𝜋(𝑠),

where 𝑅𝜋(𝑠) is a reward function for the state 𝑠, 𝑃𝜋 is the state
transition probability under the policy 𝜋, and 𝑇𝜋 is known as
a Bellman operator. Similarly, for control problems, we can
define the action value method, 𝑄𝜋(𝑠, 𝑎):

𝑄𝜋(𝑠, 𝑎) = 𝔼[

∞∑
𝑡=0

𝛾𝑡𝑟𝑡+1∣𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋].

When a value function approximation 𝑄𝜃 is linear, it is defined
as 𝑄𝜃(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜃, where 𝜙 is a feature vector for state 𝑠
and action 𝑎, and 𝜃 ∈ ℝ

𝑑 is a 𝑑 dimensional weight vector. Ac-
tion 𝑎 can be selected either greedily or randomly. To balance
the limited experience from greedy action selection and subop-
timal random action selection, an action can be chosen greedily
most of the time but randomly with small probability 𝜖—this
is called 𝜖-greedy. Off-policy TD control known as Q-learning
directly approximates 𝑄∗ = max𝑎 𝑄(𝑠, 𝑎), the optimal action-
value function, which is independent of the policy being
followed. Thus, the temporal difference error in Q-learning
is defined as 𝛿𝑡 = 𝑟𝑡+1 + 𝛾max𝑎 𝑄(𝑠𝑡+1, 𝑎)−𝑄(𝑠𝑡, 𝑎𝑡), and
the algorithm has the update rule 𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙𝑡, where
𝛼𝑡 is a learning rate, and 𝜙𝑡 = 𝜙(𝑠𝑡, 𝑎𝑡). Although TD is
known to converge for on-policy control, there is no guarantee
in off-policy problems [9].

Greedy-GQ [12], [14] is proved convergent in the mean
square projected Bellman error (MSPBE) using stochastic
gradient descent. To simplify the notation, removing 𝜋 and
omitting the arguments for 𝑄, another objective function,
MSPBE 𝐽(𝜃), can be written as:

J(𝜃) = ∥𝑄𝜃(𝑠, 𝑎)−Π𝑇𝑄𝜃(𝑠, 𝑎)∥2𝜇
= 𝔼[𝛿(𝜃)∇Q⊤]⊤𝔼[∇Q∇Q⊤]−1

𝔼[𝛿(𝜃)∇Q],
where the projection operator Π = 𝜙(𝜙⊤𝐷𝜙)−1𝜙⊤𝐷, and 𝐷
is a diagonal matrix whose diagonal values are the probability
distribution 𝜇(𝑠, 𝑎) over the state-action pairs. The norm
∥𝑄∥2𝜇 =

∫
𝑄2(𝑠, 𝑎)𝜇(𝑑𝑠, 𝑑𝑎). We denote the gradient of Q

w.r.t. 𝜃 at 𝑠 and 𝑎 by ∇Q. Including the inverse matrix, 𝑔∗
can be defined from J(𝜃):

𝑔∗ = 𝔼[∇Q∇Q⊤]−1
𝔼[𝛿(𝜃)∇Q].

To avoid computation of the inverse matrix, Greedy-GQ esti-
mates 𝑔∗ by 𝑔𝑡 along with the weight vector 𝜃𝑡. Now, from

MSPBE, the gradient descent learning Greedy-GQ updates
weights as follows:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙𝑡 − 𝛼𝛾𝜙′𝑡(𝜙
⊤
𝑡 𝑔𝑡),

𝑔𝑡+1 = 𝑔𝑡 + 𝛽𝑡(𝛿𝑡 − 𝜙⊤𝑡 𝑔𝑡)𝜙𝑡,

where 𝜙′𝑡 = 𝜙(𝑠′, 𝑎′) and 𝛽𝑡 > 𝛼𝑡. The term −𝛼𝛾𝜙′𝑡(𝜙
⊤
𝑡 𝑔𝑡) is

a correction term for the gradient descent direction.

III. FUNCTION APPROXIMATION WITH NEURAL
NETWORKS

To overcome the curse of dimensionality that arises with
tabular function approximation, several approaches such as
neural networks, radial basis functions, fuzzy sets, and support
vector machines have been proposed. Neural networks is
widely used as function approximators to represent nonlinear Q
function. The following derivation leads to nonlinear Greedy-
GQ algorithm with neural networks.

A. Nonlinear Greedy-GQ

Similar to the extension of linear TDC [21] to nonlinear
TDC [13], we can extend linear Greedy-GQ [14] to nonlinear
Greedy-GQ as follows:

𝜃𝑡+1 = Γ
(
𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙𝑡 − 𝛼𝛾𝜙′(𝜙⊤𝑡 𝑔𝑡)− 𝛼𝑡ℎ𝑡

)
,

𝑔𝑡+1 = 𝑔𝑡 + 𝛽𝑡(𝛿𝑡 − 𝜙⊤𝑡 𝑔𝑡)𝜙𝑡,

ℎ𝑡 = (𝛿𝑡 − 𝜙⊤𝑡 𝑔𝑡)∇2𝑄𝜃𝑡(𝑠𝑡)𝑔𝑡.

where 𝜙𝑡 = ∇𝜃𝑄(𝑠𝑡, 𝑎𝑡), and Γ : ℝ𝑑 → ℝ
𝑑 is a mapping

that projects the weights onto a smooth boundary parameter
space. The projection mapping prevents the parameters from
diverging in the early stage of the algorithm because of
nonlinearities. A particular definition of Γ is used to prove
convergence [12], but in practice, Γ(𝑥) = 𝑥 is often used and
is used here as well.

B. Greedy-GQ(0) with Neural Networks

Function approximation for 𝑄v,𝑤(𝑠, 𝑎) is computed by
two-layer neural networks where v is the weight matrix for
the hidden layer and 𝑤 is the weight vector for the output
layer. The forward pass for Q can be defined as:

𝑧 = ℎ(𝑥⊤v)

𝑧𝑚 = ℎ(𝑥⊤𝑣(𝑚))

𝑦 = 𝑄v,𝑤(𝑠, 𝑎) = 𝑧𝑤 = ℎ(𝑥⊤v)𝑤

When ℎ = tanh is the activation function, ∇ℎ = (1− ℎ2), so
we have the following gradient of 𝑄 w.r.t. the weight vector
𝑣(𝑚) for hidden unit 𝑚:

𝜙𝑣(𝑚) = ∇𝑣(𝑚)𝑄(𝑠, 𝑎) = 𝑤𝑚∇𝑣(𝑚)(ℎ(𝑥⊤𝑣(𝑚)))

= 𝑤𝑚(1− 𝑧𝑚
2)𝑥⊤

The 𝜙v can be denoted as the following matrix, and from this,
we can rewrite the vector 𝜙𝑣(𝑚) as a 𝑚-th row of 𝜙v matrix.

𝜙v = ∇𝑣𝑄(𝑠, 𝑎) = 𝑤 ⊙ (1− 𝑧2)⊤𝑥⊤

𝜙𝑣(𝑚) = [𝜙v]𝑚,

Fig. 1: The Two Layer Neural Networks for Q function
approximation. v = [v(s),v(a)] are the hidden unit weights,
and 𝑤 are the output unit weights for state and action input 𝑠𝑡
and 𝑎𝑡 at time 𝑡 respectively. 𝑧 is the output from the hidden
layer.

where ⊙ denotes component-wise multiplication.

∇𝑣(𝑚)𝜙𝑣(𝑚) = ∇2
𝑣(𝑚)𝑄(𝑠, 𝑎) = ∇𝑣(𝑚)(∇𝑣(𝑚)𝑄(𝑠, 𝑎)⊤)

= ∇𝑣(𝑚)(𝑤𝑚(1− 𝑧2𝑚)𝑥
⊤)

= 𝑤𝑚(∇𝑣(𝑚)1−∇𝑣(𝑚)𝑧2𝑚)⊙ 𝑥⊤

= 𝑤𝑚(−2𝑧𝑚∇𝑣(𝑚)𝑧𝑚))⊙ 𝑥⊤

= 𝑤𝑚(−2𝑧𝑚((1− 𝑧2𝑚)𝑥
⊤)⊙ 𝑥⊤

= −2𝑧𝑚(𝑤𝑚(1− 𝑧2𝑚)𝑥
⊤)⊙ 𝑥⊤

= −2𝑧𝑚𝜙𝑣(𝑚) ⊙ 𝑥⊤

For simplicity, we define 𝜙𝑣(𝑚) as:

𝜙𝑣(𝑚) = (∇2𝑄(𝑠, 𝑎))𝑔𝑣(𝑚)
𝑡
= (−2𝑧𝑚𝜙𝑣(𝑚) ⊙ 𝑥⊤)𝑔𝑣(𝑚)

𝑡

= −2𝑧𝑚𝜙𝑣(𝑚)(𝑥⊤𝑔𝑣(𝑚)
𝑡
)

= −2𝑧𝑚(𝑥⊤𝑔𝑣(𝑚)
𝑡
)𝜙𝑣(𝑚)

The update for the linear output layer follows the linear
Greedy-GQ weight update since the second derivative is zero,
which makes ℎ𝑡 zero. From the derivation above, the backward
pass can be defined as:

𝑣𝑡+1 = Γ

(
𝑣𝑡 + 𝛼𝑣

[
𝛿𝑡𝜙𝑣𝑡

− 𝛾𝜙′𝑣𝑡
(𝜙⊤𝑣𝑡

𝑔𝑣𝑡
)− ℎ𝑡

])
𝑔
𝑣
(𝑚)
𝑡+1

= 𝑔
𝑣
(𝑚)
𝑡

+ 𝛽𝑣(𝛿𝑡 − 𝜙⊤
𝑣
(𝑚)
𝑡

𝑔
𝑣
(𝑚)
𝑡

)𝜙
𝑣
(𝑚)
𝑡

ℎ
(𝑚)
𝑡 = (𝛿𝑡 − 𝜙⊤

𝑣
(𝑚)
𝑡

𝑔
𝑣
(𝑚)
𝑡

)𝜙𝑣(𝑚)

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝑤

[
𝛿𝑡𝜙𝑤𝑡

− 𝛾𝜙′𝑤𝑡
(𝜙⊤𝑤𝑡

𝑔𝑤𝑡
)
]

𝑔𝑤𝑡+1
= 𝑔𝑤𝑡

+ 𝛽𝑤(𝛿𝑡 − 𝜙⊤𝑤𝑡
𝑔𝑤𝑡

)𝜙𝑤𝑡

Summarizing the derivation, Algorithm 1 shows how to use
nonlinear Greedy-GQ(0). ActionSelection() can be defined as

Algorithm 1 Nonlinear Greedy-GQ(0) with 2-layer neural
networks

Initialization: 𝑔0 to 0, v0 and 𝑤0 as random values.
Choose proper small positive learning rate 𝛼v, 𝛼𝑤, 𝛽v and
𝛽𝑤, and set values for 𝛾 ∈ (0, 1].
Repeat for each episode:
Select 𝑎 from 𝑠 by ActionSelection() to arrive at 𝑠𝑡+1.
Observe sample, (𝑠, 𝑎, 𝑟, 𝑠′) at time step 𝑡, where 𝑞′∗ =
𝑄v,𝑤(𝑠

′, 𝑎′∗), 𝑎′∗ = argmax𝑎 𝑄v,𝑤(𝑠
′, 𝑎).

for each observed sample and 𝑄v,𝑤(𝑠, 𝑎) = 𝑤⊤𝑧 where
𝑥 = 𝑥(𝑠, 𝑎), 𝑥′ = 𝑥(𝑠′, 𝑎′), 𝑧 = tanh(𝑥⊤v), and 𝑧′ =
tanh(𝑥′⊤v) do

𝑞 = 𝑄v,𝑤(𝑠, 𝑎)
𝑞′ = 𝑄v,𝑤(𝑠

′, 𝑎′)
𝜙vt ← ∇𝑣𝑞 = 𝑤⊤𝑥(1− 𝑧2)
𝜙′vt

← ∇𝑣𝑞
′ = 𝑤⊤𝑥′(1− 𝑧′2)

𝜙𝑤𝑡
← ∇𝑤𝑞 = 𝑧

𝜙′𝑤𝑡
← ∇𝑤𝑞

=𝑧′

𝛿𝑡 ← 𝑟 + 𝛾𝑞′∗ − 𝑞

for each hidden unit 𝑚 do
𝜙
𝑣
(𝑚)
𝑡

← (∇2𝑞)𝑔𝑣𝑡
= −2𝑧(𝑥⊤𝑔𝑣𝑡

)𝜙vt

ℎ
(𝑚)
𝑡 ← (𝛿𝑡 − 𝜙⊤

𝑣
(𝑚)
𝑡

𝑔
𝑣
(𝑚)
𝑡

)𝜙
𝑣
(𝑚)
𝑡

end for
vt+1 ← Γ

(
vt + 𝛼v

[
𝛿𝑡𝜙vt − 𝛾𝜙′vt

(𝜙vt

⊤𝑔vt)− ℎ𝑡

])
𝑤𝑡+1 ← 𝑤𝑡 + 𝛼𝑤

[
𝛿𝑡𝜙𝑤𝑡

− 𝛾𝜙′𝑤𝑡
(𝜙⊤𝑤𝑡

𝑔𝑤𝑡
)
]

for each hidden unit 𝑚 do
𝑔
𝑣
(𝑚)
𝑡+1

← 𝑔
𝑣
(𝑚)
𝑡

+ 𝛽v(𝛿𝑡 − 𝜙⊤
𝑣
(𝑚)
𝑡

𝑔
𝑣
(𝑚)
𝑡

)𝜙
𝑣
(𝑚)
𝑡

end for
𝑔𝑤𝑡+1

← 𝑔𝑤𝑡
+ 𝛽𝑤(𝛿𝑡 − 𝜙⊤𝑤𝑡

𝑔𝑤𝑡
)𝜙𝑤𝑡

end for

any action selection scheme such as 𝜖-greedy, softmax or
noise-added greedy action. To learn from successive predic-
tions, this model can be easily generalized with eligibility trace
to Greedy-GQ(𝜆) as discussed in Maei, et al. [12].

C. Continuous Action Search

The best action leads to the maximum estimated Q value
on each step. At time 𝑡, with trained weights vt and 𝑤𝑡, the
estimated optimal action 𝑎∗𝑡 is determined by this one step
search [17]:

𝑎∗𝑡 = argmax
𝑎

𝑄vt,𝑤𝑡
(𝑠𝑡, 𝑎).

Here, we use back-propagation to calculate the derivative of
𝑄 with respect to the continuous action input. We can find
the best action 𝑎∗ that maximizes 𝑄(𝑠𝑡, 𝑎) by using gradient
ascent of 𝑄(𝑠𝑡, 𝑎) with respect to 𝑎. Since the feed-forward
output is 𝑄, the gradient step is derived as below:

∂𝑄(𝑠𝑡, 𝑎)

∂𝑎
= 𝑤⊤𝑡 ⊙ (1− 𝑧2)v

(a)
t

⊤
.

v
(a)
t are the weights applied to action input (v = [v(s),v(a)]).

In the beginning, the network approximates the Q function
poorly, and the found action is not likely to be the optimal. This
will lead to further exploration in early stages. However, as the
training goes on, or as 𝜖 decreases to exploit the learned policy,

Fig. 2: 2-state model

the accuracy of approximation grows, and back-propagation
search will be close to the optimal. For faster search, we use
Moller’s SCG [16] that uses gradients with approximate second
order derivatives.

IV. EXPERIMENTS

We examine the learning performance of nonlinear Greedy-
GQ by comparing it with linear Greedy-GQ and nonlinear
TD. Also, we demonstrate how the correction term affects
the convergence or the performance of learning. For easier
analysis on the effect of the correction term, first we test a
simple toy problem, consisting of 2 discrete states and actions.
Next, the combination of nonlinear Greedy-GQ and continuous
action control is examined on an octopus arm problem. From
our pilot tests, exponential decaying 𝜖-greedy for exploration
control outperformed softmax, greedy, or greedy with Gaussian
noise, so the following experiments used 𝜖-greedy with quickly
decreasing 𝜖 as:

𝜖𝑡+1 = 𝜖𝑡 × 𝑒
log 𝜖𝑁

𝑁 ,

where 𝑁 is the number of episodes to train.

A. 2-state model

TD, linear Greedy-GQ(0) and nonlinear Greedy-GQ(0) are
tested on the simple 2-state model shown in Fig. 2. The
environment changes its state when an action is 1 and remains
in the current state when the action is 2. The model can be
summarized as follows:

𝑠′ =

{
𝑠 if 𝑎 = 2
1 if 𝑠 = 2 and 𝑎 = 1
2 if 𝑠 = 1 and 𝑎 = 1

𝑅(𝑠, 𝑎) =

{
2 if 𝑠 = 𝑎
1 otherwise

Although this 2-state model is simple, the shape of the optimal
Q function is not linear. A linear function approximation
cannot cover both the state-action (1, 1) and (2, 2), and it
makes hard to reach an optimal policy.

Linear and nonlinear Greedy-GQ(0) were applied to the
2-state model for 1500 episodes (100 steps per each episode).
This was repeated 100 times. Fig. 3 shows the mean of the
100 learning curves. From pilot tests, 𝛾 = 0.9, 𝛼 = 0.0001,
and 𝛽 = 0.01 are selected for linear Greedy-GQ(0), and
𝛾 = 0.9, 𝛼𝑣 = 0.0001, 𝛼𝑤 = 0.0001, 𝛽𝑣 = 0.01, and
𝛽𝑤 = 0.001 for nonlinear Greedy-GQ(0). Here, the subscripts
𝑣 and 𝑤 represent the parameters for hidden layer and output
layer respectively. Neural networks in nonlinear Greedy-GQ(0)

0 200 400 600 800 1000 1200 1400

Episodes

145

150

155

160

165

170

175

180

185

190

S
u
m

o
f
R
e
w
a
rd
s
o
v
e
r
1
0
0
s
te
p
s

nonlinear Greedy-GQ(0)

linear Greedy-GQ(0)

nonlinear Q-learning

Fig. 3: Sum of rewards per episode on 2-state model. TD (with
nonlinear neural networks function approximation) and linear
Greedy-GQ(0) could not find an optimal policy. For smooth
curve, moving average (over 100 episodes) is used.

show the best performance with 20 hidden units. 𝜖 decays
exponentially from 1 to 0.01. As shown in Fig. 3, nonlinear
Greedy-GQ(0) solves what is optimized sum of rewards to the
2-state model problem, however, linear Greedy-GQ(0) is not
able to learn. Linear function approximation cannot find good
parameters for this 2-state problem.

In Fig. 3, we can also see that nonlinear Q-learning
without Greedy-GQ correction term cannot solve the problem.
This means there are some factors that disturb learning.
To observe this, we examine the effects of the correction
terms by changing 𝛽. All combinations of 𝛽s (𝛽𝑣, 𝛽𝑤 ∈
{0, 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 1.}) are
tested and the cases with computation overflow are omitted.
In Fig. 4, we observe that Q-learning without correction term
(𝛽𝑣 = 𝛽𝑤 = 0) cannot learn well. Interestingly, when there
is small or no correction on the hidden layer (𝛽𝑣 ≤ 0.1),
it performs poorly. Correcting the gradient direction on the
hidden layer is crucial for this 2-state model. In the two-layer
neural networks, only the hidden layer contains a nonlinear
operation, the activation function, and the output layer is
linear sum of outputs from hidden units. When the target Q
function is not linear, corrections in the nonlinear layer seem
to be necessary for good performance.

Fig. 5a shows reward versus episodes for a single run with
𝛽 = [1, 0.01]. There is a big jump in the curve around the
350th repetition. In Fig. 5b, we can see the large oscillation
in TD error and its estimation, and then they drop around the
350th episode (35,000th step) as well (TD error is recorded
for each state transition and 100 steps are recorded for each
episode). We observe that the discrepancy from TD estimation
grows in the beginning with random exploration, but as the
exploration rate decreases, the TD estimation gets closer to
the TD error. From this example run, Fig. 5 presents the TD
gradient and Greedy-GQ(0) correction both in the hidden layer
and the output layer. Unlike the output layer correction that
has little effect on the gradient direction, the correction in

Fig. 4: The effects of the correction term in 2-state model. 𝑦-axis on the plot shows the sum of area under the reward curve. The
𝑥-axis is sorted by 𝛽𝑣 and 𝛽𝑤. The yellow area groups the results with 𝛽𝑣 ≤ 0.1, and the rest shows the results with 𝛽 ≥ 0.5.
For 10 runs, small learning rates 𝛽𝑣 for the hidden layer result in lower performance.

the hidden layer has a large impact on the gradient. When
the TD error hits the maximum, and at the same time when
the learning curve jumps up, the correction term modifies the
gradient direction to reduce the TD error and eventually leads
to an optimal policy.

B. Octopus Arm

A real octopus arm is a complex organ with many de-
grees of freedom. Here, the Yekutieli’s two-dimensional model
[25] is used. The model is composed of spring muscles
for each compartment. The basis of the model is that mus-
cular hydrostats maintain a constant volume [8], so forces
are transferred among the segments. Gravity, buoyancy, fluid
friction, internal particle repulsion and pressure, and muscle
contractions are computed each time step. For our experiments,
we used the octopus arm model in the RL-competition [4]
(Fig. 6). The problem contains 10 compartments, and the
ventral, dorsal, and transverse muscles are controlled by in-
dependent activation variables. To make the problem simple,
Engel, et al., [7] used 6 predefined discrete actions. In this
paper, without reducing the action space, we train the arm
to learn from the full action space defined by 33-dimensional
real-valued actions. For the 10-compartment example, the state
space is defined by 82 continuous values: base angle, angular

velocity, x-y coordinate positions of each joints, and their
velocities.

We place the goal at (4, 3) as in Fig. 6. Initially the base of
the arm is placed close to (0, 0) and the arm is straight toward
the right. The target task is touching the goal with any part
of the arm. On each time step, the arm receives −0.01 as a
penalty, and if it reaches the goal, it gets 10 as a reward. The
maximum number of steps per each episode is limited to 1000
steps. Thus, if the arm touches the goal at the last moment,
the total reward will be 0. If it fails to reach the goal, the total
will be −10. Positive, larger rewards are obtained when the
goal is reached sooner. The episodes are repeated 500 times
with exponentially decreasing 𝜖 value from 1 to 0.01. From
pilot tests, 𝛼 = [0.0001, 0.0001] is selected. Each experiment
was run 10 times.

Among all 𝛽 combinations, 𝛽 = [0.1, 0.0001] shows the
best performance and less variation than other 𝛽 values. From
this, as we examined in previous section, we can verify the
stability contribution of the correction term empirically.

Fig. 7 compares the performance between continuous and
discrete actions. After failing to touch the goal in the begin-
ning, continuous control finds sequences of continuous actions
that result in reaching the goal. With 6 discrete actions, it
fails to reach the goal in 500 repetitions. It may need more

0 200 400 600 800 1000 1200 1400

episodes

130

140

150

160

170

180

190

200

R
e
w
a
rd
s

(a) Examplar learning curve

0 20000 40000 60000 80000 100000 120000 140000

steps

200

150

100

50

0

50

100

150

T
D
e
rr
o
r

TD error

estimated (φT g)

(b) TD error (𝛿) and approximation (𝛿𝑘𝑔𝑤𝑘) in Greedy-GQ(0)

(c) TD gradient (hidden) (d) Greedy-GQ(0) correction (hidden)

(e) TD gradient (output) (f) Greedy-GQ(0) correction (output)

Fig. 5: TD gradient and Greedy-GQ(0) correction term in hidden and output layer

(a) Initial position

(b) Controlling the arm

Fig. 6: Benchmark octopus arm control problem

experience to learn the policy to touch the goal. Although it is
not presented, Q-learning(0) with or without continuous action
search has been tested, but a positive learning curve was never
observed, indicating further experience may be needed. Only
nonlinear Greedy-GQ(0) with continuous actions was able to
solve the task.

Reviewing the state trajectories, we also found that with
discrete actions, the arm failed to find the short sequence
of anti-clockwise movements towards to the goal. It only
experienced clock-wise rotation to reach the goal, which costs
more than 850 steps. Continuous action provides the additional
flexibility during the early exploration stage to find the shorter
paths of less than 200 steps. The number of steps in Fig. 7
shows this as well: continuous action (Fig. 7a) shows various
experience that reaches to the goal in a wide range of steps,
but discrete action (Fig. 7b) limits the experience to paths of
more than 600 steps.

V. CONCLUSION

This paper extends linear Greedy-GQ to a nonlinear form
with feed-forward neural networks for stable learning perfor-
mance and then combines it with continuous action search. An

0 100 200 300 400 500

episodes

10

5

0

5

10

s
u
m
o
f
r
e
w
a
r
d
s

0

200

400

600

800

1000

#
o
f
s
te
p
s

(a) Continuous actions

0 100 200 300 400 500

episodes

10

5

0

5

10

s
u
m
o
f
r
e
w
a
r
d
s

0

200

400

600

800

1000

#
o
f
s
te
p
s

(b) 6 discrete actions

Fig. 7: Performance comparison between continuous action
and discrete action control. Thick lines show the sum of
rewards and dash lines show the number of steps per each
episode. TD(0) fails to learn in 500 repetitions, so the learning
curve is omitted.

analysis reveals that the nonlinear Greedy-GQ correction term
is crucial for training the hidden layer when the target Q func-
tion is nonlinear. Testing on a complex octopus problem with
a high dimensional continuous domain, we observe that the
continuous action search improves the learning performance
(both in speed and asymptotic level). Future research activity
will follow in three main directions: examining more real-
world problems, applying Regularized Off-Policy TD learning
(RO-TD) [11] to be robust to noisy inputs, and development
of batch-oriented version of nonlinear Greedy-GQ and com-
parative research against other state-of-the-art algorithms such
as CACLA [24] and SMC-learning [3].

REFERENCES

[1] L. Baird. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of 12th International Conference on

Machine Learning, pages 30–37, 1995.

[2] H. Benbrahim and J. A. Franklin. Biped dynamic walking using
reinforcement learning. Robotics and Autonomous Systems, 22(3):283–
302, 1997.

[3] A. L. M. R. A. Bonarini. Reinforcement learning in continuous action
spaces through sequential monte carlo methods. Proc. Adv. Neural Inf.
Process. Syst, 20:833–840, 2008.

[4] R. Community. Rl-competition. http://www.rl-competition.org/, 2009.
[Online; accessed 03-July-2014].

[5] T. Degris, M. White, and R. S. Sutton. Off-policy actor-critic. arXiv
preprint arXiv:1205.4839, 2012.

[6] M. Dorigo and M. Colombetti. Robot shaping: Developing autonomous
agents through learning. Artificial intelligence, 71(2):321–370, 1994.

[7] Y. Engel, P. Szabo, and D. Volkinshtein. Learning to control an octopus
arm with gaussian process temporal difference methods. Advances in
Neural Information Processing Systems, 18:347, 2006.

[8] W. M. Kier and K. K. Smith. Tongues, tentacles and trunks: the
biomechanics of movement in muscular-hydrostats. Zoological Journal
of the Linnean Society, 83(4):307–324, 1985.

[9] J. Z. Kolter. The fixed points of off-policy td. pages 2169–2177, 2011.

[10] L.-J. Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321,
1992.

[11] B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy td-learning.
pages 845–853, 2012.

[12] H. R. Maei. Gradient temporal-difference learning algorithms. PhD
thesis, University of Alberta, 2011.

[13] H. R. Maei, C. Szepesvári, S. Bhatnagar, D. Precup, D. Silver, and R. S.
Sutton. Convergent temporal-difference learning with arbitrary smooth
function approximation. pages 1204–1212, 2009.

[14] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton. Toward off-
policy learning control with function approximation. In Proceedings of
the 27th International Conference on Machine Learning, pages 719–
726, 2010.

[15] J. D. R. Millán, D. Posenato, and E. Dedieu. Continuous-action q-
learning. Machine Learning, 49(2-3):247–265, 2002.

[16] M. Møller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural networks, 6(4):525–533, 1993.

[17] J. Santamaria, R. Sutton, and A. Ram. Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive
behavior, 6(2):163, 1997.

[18] P. Stone and R. S. Sutton. Scaling reinforcement learning toward
robocup soccer. In In International Conference on Machine Learning,
volume 1, pages 537–544, 2001.

[19] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[20] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The
MIT press, 1998.

[21] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In
Proceedings of the 26th Annual International Conference on Machine
Learning, pages 993–1000, 2009.

[22] V. Tadić. On the convergence of temporal-difference learning with linear
function approximation. Machine Learning, 42(3):241–267, 2001.

[23] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. Automatic Control, IEEE Trans-
actions on, 42(5):674–690, 1997.

[24] H. Van Hasselt and M. A. Wiering. Reinforcement learning in
continuous action spaces. In Approximate Dynamic Programming
and Reinforcement Learning, 2007. IEEE International Symposium on,
pages 272–279, 2007.

[25] Y. Yekutieli, R. Sagiv-Zohar, R. Aharonov, Y. Engel, B. Hochner, and
T. Flash. Dynamic model of the octopus arm. i. biomechanics of the
octopus reaching movement. Journal of neurophysiology, 94(2):1443–
1458, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

