

IoTMonitor: A Hidden Markov Model-based Security System to Identify Crucial Attack Nodes in Trigger-action IoT Platforms

Md Morshed Alam, Md Sajidul Islam Sajid, Weichao Wang, Jinpeng Wei

Motivation

- Trigger-action IoT platforms (e.g., IFTTT) are getting popular
- Chain of interactions creates security vulnerabilities
- Attackers inject malicious events remotely

Problem Statement



 How can we determine the optimal attack path an attacker may adopt to implement a trigger-action based attack?

Existing Approaches

Approach-1:

- Performing static analysis on application source code
- Instrumenting customized codes
- Generating system models at runtime
- Identifying and blocking unsafe and insecure state transitions

Example: IoTGuard [1]

[1] Z. B. Celik, G. Tan, and P. Mcdaniel, "IOTGUARD : Dynamic Enforcement of Security and Safety Policy in Commodity IoT," no. February, 2019.

Existing Approaches (Contd.)

Approach-2:

- Analyzing network traffics to extract wireless fingerprints
- Using supervised learning methods to identify malicious activities

Example: HoMonit [1]

1] W. Zhang, "HoMonit : Monitoring Smart Home Apps from Encrypted Traffic," Comput. Commun. Secur., pp. 1074–1088, 2018.

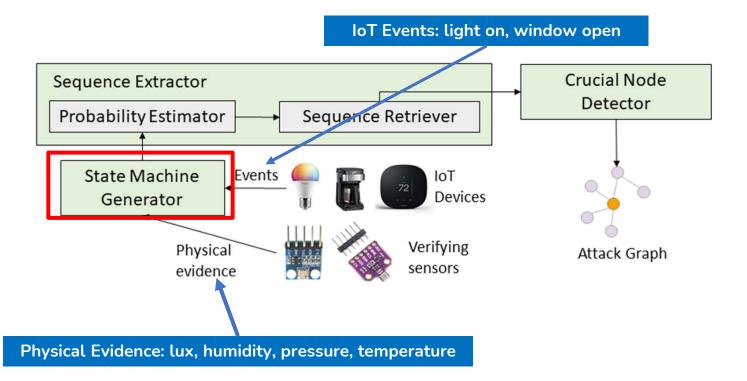
IoTMonitor at a Glance

- A Hidden Markov Model based security system
- Discovers probabilistic relationships between IoT event occurrences and physical evidence

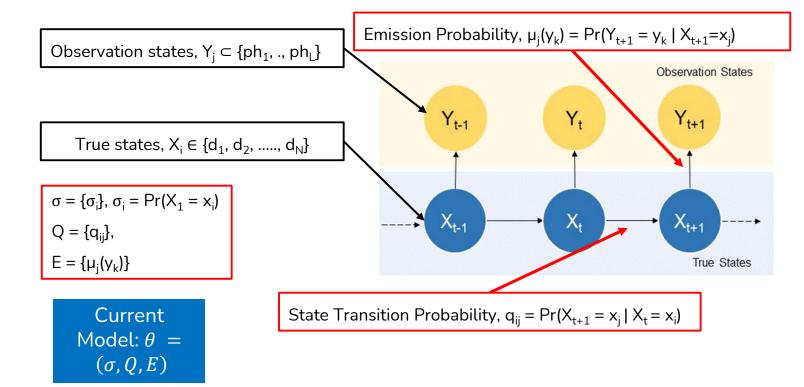
<u>Goals</u>:

- Determining optimal attack sequence from a set of physical evidence
- Identifying the most frequently triggered IoT events

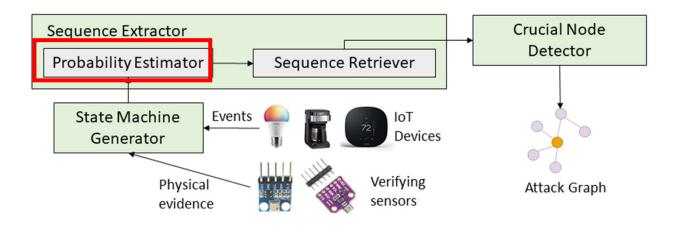
System Architecture



State Machine Generator



Probability Estimator



Goal: Given the observation sequence $Y = \{Y_1, Y_2, ..., Y_T\}$, determine

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \operatorname{Pr}(Y_1, Y_2, ..., Y_T | \theta)$$

Probability Estimator (Contd.)

• IoTMonitor uses forward-backward procedure to calculate θ^* .

the probability of being in the state x_i at time t given a history of observations $\langle Y_1, Y_2, ..., Y_t \rangle$ $\alpha_t(i) = Pr(Y_1, Y_2, ..., Y_t, X_t = x_i | \theta)$ $\beta_t(i) = Pr(Y_{t+1}, Y_{t+2}, ..., Y_T | X_t = x_i, \theta)$

the probability of being in the state x_i at time t given a set of observations $<\!Y_{t+1},\,Y_{t+2},\,...,\,Y_T\!>$

Initialization

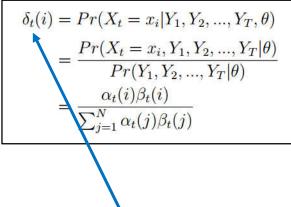
$$\alpha_1(i) = \sigma_i \mu_i(Y_1), \quad 1 \le i \le N$$
$$\beta_T(i) = 1, \quad 1 \le i \le N$$

Induction

$$\alpha_{t+1}(j) = \mu_j(Y_{t+1}) \sum_{i=1}^N \alpha_t(i) q_{ij}, \ 1 \le t \le T - 1, \ 1 \le j \le N$$

$$\beta_t(i) = \sum_{j=1}^N q_{ij} \mu_j(Y_{t+1}) \beta_{t+1}(j), \ t = T - 1, \dots, 2, 1, \ 1 \le i \le N$$

Probability Estimator (Contd.)



$$\xi_t(i,j) = Pr(X_t = x_i, X_{t+1} = x_j | Y_1, Y_2, ..., Y_T, \theta)$$

=
$$\frac{Pr(X_t = x_i, X_{t+1} = x_j, Y_1, Y_2, ..., Y_T | \theta)}{Pr(Y_1, Y_2, ..., Y_T | \theta)}$$

=
$$\frac{\alpha_t(i)q_{ij}\beta_{t+1}(j)\mu_j(Y_{t+1})}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i)q_{ij}\beta_{t+1}(j)\mu_j(Y_{t+1})}$$

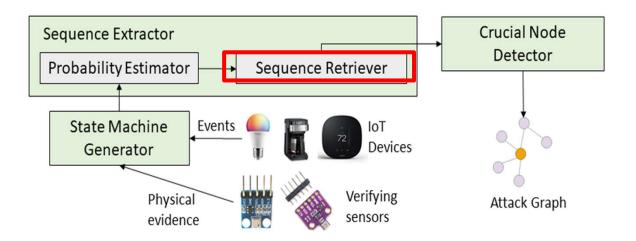
 $\delta_t(i)$ = the probability of the system being in the true state x_i at time instance t

$$ar{\sigma}_i = \delta_1(i) \qquad ar{q}_{ij} = rac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \delta_t(i)}$$

 $\xi_t(i, j)$ = the probability of the system being in the true states x_i and x_j at time instances t and t+1

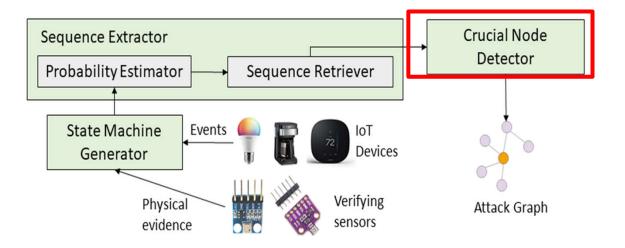
$$\bar{\mu}_j(y_k) = \frac{\sum_{t=1}^T \mathbf{1}_{(Y_{t+1}=y_k)} \delta_t(j)}{\sum_{t=1}^T \delta_t(j)}$$

Sequence Retriever



Goal:
$$\omega_t(i) = \max_{x_1,...,x_{i-1}} \left\{ Pr(X_1 = x_1,...,X_t = x_i, Y_1,...,Y_t = y_k | \theta) \right\}$$

Crucial Node Detector



Goal: To identify the most frequently triggered events

Crucial Node Detector (Contd.)

Algorithm 1 Crucial node detection algorithm Input: $X, \Upsilon_1, \Upsilon_2, ..., \Upsilon_p$ Output: Pairs of true states responding to the most frequently triggered events 1: $i \leftarrow 1$ 2: while $i \leq p$ do Number of times a particular $S_i \leftarrow \text{Longest Common Subsequence between } X \text{ and } \Upsilon_i$ 3: pair is present in the sequence for $j \leftarrow 1$ to $(|S_i| - 1)$ do 4: $E[i,j] \leftarrow \{S_i[j], S_i[j+1]\}$ 5: if E[i, j] not in SCORE.Keys() then 6: $SCORE[E[i, j]] \leftarrow 1$ 7: else 8: $SCORE[E[i, j]] \leftarrow SCORE[E[i, j]] + 1$ 9: end if 10: end for 11: 12: end while 13: return argmax (SCORE[E[i, j]]) E[i,j]

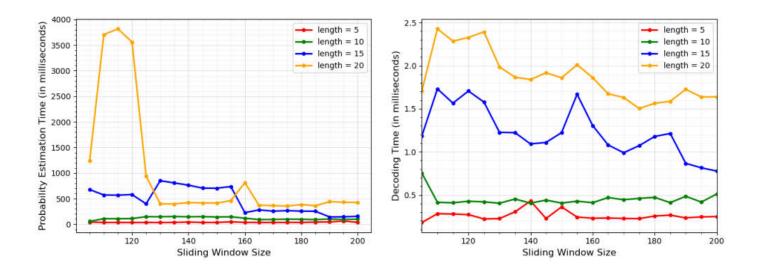
Experimental Settings

- Utilized the PEEVES [1] dataset
- Data collected from 12 distinct IoT devices and 48 sensors
- Conceptualized a sliding window w_i
- When an event is occurred at time t_i, we consider all sensor measurements collected within the time period (t_i+w_i) for the purpose of event verification

[1] S. Birnbach, S. Eberz, and I. Martinovic, "Peeves: Physical Event Verification in Smart Homes," *Proc. ACM Conf. Comput. Commun. Secur.*, pp. 1455–1467, 2019.

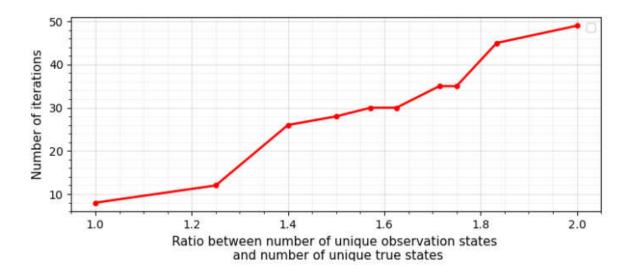
Probability Estimation Time vs Decoding Time

- Estimation time: the time required to estimate the converged θ^*
- Decoding time: the time required to extract the hidden sequence



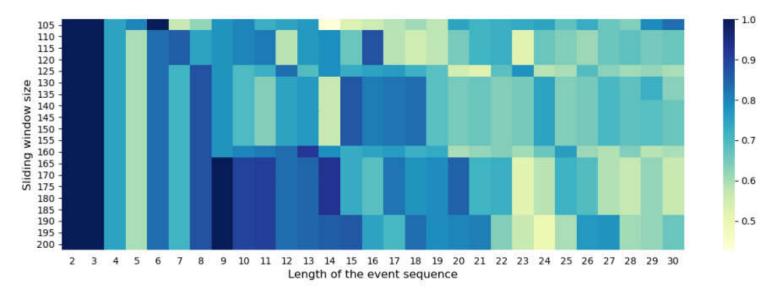
Computational Overhead

 We compute computational overhead for forwardbackward procedure since IoTMonitor spends most of the computations for estimating probabilities



Accuracy Score

 Determines how accurately the extracted hidden sequence of events represent the actual IoT events triggered during the attack



Future Work

- Modeling the joint contribution of multiple events into leading a single trigger operation
- Investigating noisy sensor's impact on the observation space and the detection accuracy of attack path

Conclusion

- IoTMonitor uses a Hidden Markov Model based approach to determine the optimal attack sequence
- IoTMonitor leverages the probabilistic relation between physical evidence captured by sensors and actual IoT events triggered
- IoTMonitor discerns the underlying event sequence with >=90% accuracy mostly

Questions?