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Motivation

• Trigger-action IoT platforms (e.g., IFTTT) are getting 

popular 

• Chain of interactions creates security vulnerabilities

• Attackers inject malicious events remotely

2

2022



Problem Statement

• How can we determine the optimal attack path an 
attacker may adopt to implement a trigger-action based 
attack? 

E: motion detected
A: activate home-mode

E: home-mode activated
A: turn-on light

E: light turned-on
A: start grinding coffee

E: light turned-on
A: open windowE: motion detected

A: activate home-mode

Malicious event 
injection
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Existing Approaches

Approach-1:

• Performing static analysis on application source code

• Instrumenting customized codes

• Generating system models at runtime

• Identifying and blocking unsafe and insecure state transitions

[1] Z. B. Celik, G. Tan, and P. Mcdaniel, “IOTGUARD : Dynamic Enforcement of Security and Safety Policy in Commodity 

IoT,” no. February, 2019.

Example: IoTGuard [1]
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Existing Approaches (Contd.)

Approach-2:

• Analyzing network traffics to extract wireless fingerprints

• Using supervised learning methods to identify malicious 

activities

1] W. Zhang, “HoMonit : Monitoring Smart Home Apps from Encrypted Traffic,” Comput. Commun. Secur., pp. 1074–1088, 

2018.

Example: HoMonit [1]
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IoTMonitor at a Glance

• A Hidden Markov Model based security system 

• Discovers probabilistic relationships between IoT event 

occurrences and physical evidence

Goals:

• Determining optimal attack sequence from a set of physical 

evidence

• Identifying the most frequently triggered IoT events 
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System Architecture
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Physical Evidence: lux, humidity, pressure, temperature

IoT Events: light on, window open
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State Machine Generator
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σ = {σi}, σi = Pr(X1 = xi)

Q = {qij}, 

E = {µj(yk)}

Current 
Model: � =

 �, �, �

True states, Xi ∈ {d1, d2, ….., dN}

Observation states, Yj ⊂ {ph1, ., phL}

State Transition Probability, qij = Pr(Xt+1 = xj | Xt = xi)

Emission Probability, µj(yk) = Pr(Yt+1 = yk | Xt+1=xj)
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Probability Estimator
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Goal: Given the observation sequence � =  {�1, �2, … , ��}, 
determine
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Probability Estimator (Contd.)

• IoTMonitor uses forward-backward procedure to calculate �∗. 
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the probability of being in the state xi at time 
t given a history of observations <Y1, Y2, …, 

Yt>

the probability of being in the state xi at time 
t given a set of observations <Yt+1, Yt+2, …., 

YT>

Initialization

Induction
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Probability Estimator (Contd.)
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δt(i) = the probability of the system being 

in the true state xi at time instance t 

ξt(i, j) = the probability of the system being in 

the true states xi and xj at time instances t and 

t+1
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Sequence Retriever
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Goal:
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Crucial Node Detector
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Goal: To identify the most frequently triggered events
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Crucial Node Detector (Contd.)
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Number of times a particular 
pair is present in the sequence
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Experimental Settings

• Utilized the PEEVES [1] dataset

• Data collected from 12 distinct IoT devices and 48 sensors

• Conceptualized a sliding window ��

• When an event is occurred at time ti, we consider all sensor 

measurements collected within the time period (ti+wi) for the 

purpose of event verification  

[1] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical Event Verification in Smart Homes,” Proc. ACM Conf. Comput. 
Commun. Secur., pp. 1455–1467, 2019.
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Probability Estimation Time vs Decoding Time

• Estimation time: the time required to estimate the converged θ∗

• Decoding time: the time required to extract the hidden sequence
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Computational Overhead

• We compute computational overhead for forward-

backward procedure since IoTMonitor spends most of the 

computations for estimating probabilities
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Accuracy Score
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• Determines how accurately the extracted hidden sequence 
of events represent the actual IoT events triggered during 
the attack 
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Future Work

• Modeling the joint contribution  of multiple events into 

leading a single trigger operation

• Investigating noisy sensor’s impact on the observation space 

and the detection accuracy of attack path
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Conclusion

• IoTMonitor uses a Hidden Markov Model based approach to 

determine the optimal attack sequence

• IoTMonitor leverages the probabilistic relation between 

physical evidence captured by sensors and actual IoT 

events triggered

• IoTMonitor discerns the underlying event sequence with 

>=90% accuracy mostly
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Questions?
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