Customer Loyalty Improvement Recommender System (CLIRS)

Katarzyna Anna Tarnowska, Prof. Zbigniew Ras
Department of Computer Science, University of North Carolina at Charlotte
Research sponsored by The Daniel Group

INTRODUCTION

- **Net Promoter Score** – a popular measure for customer loyalty
- Consulting telephone survey data on B2B customer feedback all over US
- Data collected over 6 years from 38 companies in heavy equipment repair industry
- The goal is to:
 - improve NPS and revenue
 - understand customer sentiment
 - identify the most valuable improvements
 - prioritize the highest ROI changes

METHOD

- **Action rules**:
 - Are mined from large datasets with data mining algorithms
 - Can be understood as patterns in the dataset
 - Each rule is characterized by:
 - Support – how many customers can be changed
 - Confidence – probability of changing a customer

 - **Traditional rules**:
 - Benchmark (1-3) AND Benchmark2 (7-9)
 - THEN Detractor → Promoter

- **Meta action mining**:
 - External, “higher-level” events that trigger changes in Benchmarks

- **Triggering**:
 - Benchmark1 (3-6) AND Benchmark2 (7-9)
 - THEN Detractor → Promoter

- **NPS impact calculation**:
 - Increase NPS by 9%

RESULTS

- **Web-based interface** for exploring results
- **Supporting recommendations for 38 heavy equipment repair companies**
- **Recommending improvement areas**
- **Choice between different optimal combinations of actions**
- **Quantifying the expected NPS Impact**
- **Feasibility assignment**
- **Attractiveness calculation**
- **Color-coding and dynamic update of charts**
- **Exploring raw text comments from customers in a recommended area**

CONCLUSIONS

- **CLIRS2** – new version of the system built from text-only data
- **Transforming text comments into structured table**
- **Mining actionable knowledge from sentiment table**

FUTURE DIRECTIONS

- **CLIRS2**: new version of the system built from text-only data
- **Transforming text comments into structured table**
- **Mining actionable knowledge from sentiment table**

ACKNOWLEDGEMENTS