Definition of a set of relevant cedents
Table of content

- Association rules
- Cedents and partial cedents
- Literals
- Coefficient type
Association rule, cedents and literals

\[
\text{Antecedent} \approx \text{Succedent / Condition}
\]

cedent: partial cedent \land partial cedent \land ... \land partial cedent

partial cedent: literal \land literal \land ... \land literal

partial cedent: literal \lor literal \lor ... \lor literal

literal: \text{Attribute (coefficient)} \text{ or } \neg \text{Attribute (coefficient)}
Set of relevant association rules

Is given by:
- Set of relevant antecedents
- Set of relevant succedents
- Set of relevant conditions
- 4ft-quantifier
Example of 4ft-Miner input

<table>
<thead>
<tr>
<th>ANTECEDENT</th>
<th>QUANTIFIERS</th>
<th>SUCCEDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>BASE p = 5.000</td>
<td>Succeedent</td>
</tr>
<tr>
<td>District (subset), 1 - 1</td>
<td>B, pos</td>
<td>Status (subset), 1 - 1</td>
</tr>
<tr>
<td>Salary</td>
<td>FUI p = 0.900</td>
<td></td>
</tr>
<tr>
<td>Salary (subset), 1 - 1</td>
<td>B, pos</td>
<td></td>
</tr>
<tr>
<td>Salary by 500 (subset), 1 - 1</td>
<td>B, pos</td>
<td></td>
</tr>
</tbody>
</table>

Partial antecedent

The set of relevant antecedents

The set of relevant succedents

The set of relevant conditions

4ft-quantifier
Table of content

- Asociation rules
- Cedents and partial cedents
- Literals
- Coefficient type
Antecedent and partial antecedents

Antecedent

\[\varphi \approx \psi / \chi \]

Partial antecedent

\[\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k \]

Partial antecedent

\[\varphi_i = \lambda_{i,1} \land \ldots \land \lambda_{i,k_i} \]

Conjunction of literals

Literal
Antecedent and partial antecedents

Antecedent

\[\varphi \approx \psi / \chi \]

Partial antecedent

\[\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k \]

Partial antecedent

\[\varphi_i = \lambda_{i,1} \lor \ldots \lor \lambda_{i,k_i} \]

Disjunction of literals

Literal
Antecedent and partial antecedents – example

Partial antecedent
The set of relevant partial cedents

Is given by:

- The set of attributes A_1, \ldots, A_p which creates literals.
- Boolean operation type conjunction/disjunction.
- Minimal and maximal length.
- Some of the attributes are marked as Basic – partial antecedents must contain at least one Basic attribute.
- Classes of equivalence – from each class there must be maximum of one attribute in one partial antecedent.
- Simple definition of the set of relevant literals for each attribute.
Partial cedents - example

- Minimal and maximal length
- Conjunction / disjunction

Relevant cedent contains at least one Basic attribute
Table of content

- Association rules
- Cedents and partial cedents
- Literals
- Coefficient type
The set of relevant literals

Is given by:

- One of the seven types of literals
- Minimal and maximal length
- One of the positive/negative literal option
 - To generate only positive literals
 - To generate only negative literals
 - To generate positive and negative literals
Definition of the literal - example

- Just $A(\alpha)$
- Just $\neg A(\alpha)$
- Both $A(\alpha)$ and $\neg A(\alpha)$
- Type α

At least one Basic attribute

Min. and max. length α
Table of content

- Association rules
- Cedents and partial cedents
- Literals
- Coefficient type
Coefficient type

- Subset
- One category
- Interval
- Cyclical intervals
- Cut
- Left cut
- Right cut
Subset – example

Attribute A with possible values (categories) 1, 2, 3, 4, 5.

Literals with coefficient Subset (1 – 3).

A(1), A(2), A(3), A(4), A(5)
A(1, 2), A(1, 3), A(1, 4), A(1, 5)
A(2, 3), A(2, 4), A(2, 5)
A(3, 4), A(3, 5)
A(4, 5)
A(1, 2, 3), A(1, 2, 4), A(1, 2, 5)
A(2, 3, 4), A(2, 3, 5)
A(3, 4, 5)
Subset – another example

![Subset Example](image)

Literal
- **Attribute:** District
- **Literal type:** Basic
- **Gace type:** Positive
- **Coefficient type:** Subset
- **Coefficient length:**
 - Min. length: 1
 - Max. length: 2

Comment:

Category:

Contingency table
- **Antecedent**
 - Age: 27
 - Sex: F
 - District: Beroun
- **Succedent**
 - Loan: bad

Hypothesis ID: 2

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>DATA</th>
<th>Graph</th>
<th>AR2NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succedent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Succedent
- NOT Succedent
 - Antecedent: 700
 - NOT Succedent: 5454
 - Succedent: 6154
 - Antecedent: 727
 - NOT Succedent: 5454
 - Succedent: 6181
One category – example
Interval – example

(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
Interval – example output

Antecedent: Age(<40;50), <50;60) & Salary by 500((8500;9000)…(9500;10000))
Succedent: Status(Bad)
Condition: (empty)

Contingency table

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Succedent</th>
<th>NOT Succedent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>1071</td>
<td>477</td>
</tr>
<tr>
<td>NOT Antecedent</td>
<td>2994</td>
<td>1639</td>
</tr>
<tr>
<td></td>
<td>4065</td>
<td>2116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1548</td>
</tr>
</tbody>
</table>
Cyclical interval – example

Attribute: *Day of the week with values* mo, tu, we, thu, fri, sa, su

Generated literals:

Day of the week (mo, tu, we)
Day of the week (tu, we, thu)
Day of the week (we, thu, fri)
Day of the week (thu, fri, sa)
Day of the week (fri, sa, su)
Day of the week (sa, su, mo)
Day of the week (su, mo, tu)
Left cut – example

(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>

(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>

(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
Right cut – example

(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
(8000;8500>, (8500;9000>, (9000;9500>, (9500;10000>, (10000;12500>, (12500;13000>
Another coefficients

Cut – generates
Left cut and Right cut

For Boolean attributes