Interactive Visualization of Mobile
Network Simulations
&
3D Segmentation and
Quantification of Brain Tumors
By
Jake Proctor

Senior Thesis

Advisors: Dr. K. R. Subramanian, Dr. T. A. Dahlberg, and Dr. J. P. Brockway

08 May 2002

Table of Contents

Chapter 1.
Introduction 1-2
Chapter 2:
Interactive Visudization of Mobile Network Smulations 3-16
2.1 Background Information and Problem description 3-6
2.2 Description of Mobvis 6-8
2.3 Modifications and Additions to Mobvis 8-15
2.4 Future Work 15-16
2.5 Mohile Visudization Summary 16
Chapter 3:
3D Segmentation and Quantification of Brain Tumors 17-56
3.1 Background Information and Problem description 17-18
3.2 Objective of Project 18-19
3.3 Description of current gpplication 19-21
3.4 The Python Implementation 21-31
3.5 Tumor segmentation and quantification 32-39
3.6 Results 39-55
3.7 Conclusions and Future Work 55-56
Chapter 4:
Summary 57
References 58-59

Acknowledgements

| would like to thank Dr. Subramanian, Dr. Dahlberg, and Dr. Brockway for their
expertise advice and assistance over the course of thisproject. Their guidance and
support have been an invauable resource, without which this work could not have been

completed.

Chapter 1

Introduction

Two congtantly growing domains where much research is currently focused are
congestion control in mobile networks and the segmentation and quantification of brain
tumor volumes. The purpose of this report isto detail the work | have performed towards
my senior project at the University of North Carolinaat Charlotte, which relates to these
areas of research. Over the course of one academic year, | worked on two separate
projects. Thefirst of which was related to the area of research surrounding congestion
control in mobile networks and the visudization of survivability metrics for these
networks. The second project involved segmenting tumors from datasets produced by
magnetic resonance imaging (MRI) of the human brain and quantifying these tumors.

This report is divided into two magjor sections, each describing the details of one
of the projects mentioned above. The firgt section provides a brief background about the
problems faced with mobile networks and the current gpproaches to solving these
problems. This section aso describes Mobvis, an application developed by Dr. K. R.
Subramanian and Dr. T. A. Dahlberg, which provides 3D visudization of red-time
survivability metrics for mobile networks. Thework | performed, which was focused on
the modification and addition of features to Mobvis, is aso described in this section.

The second mgor section of this report describes the work | performed on an
gpplication developed by Dr. K. R. Subramanian that provides ameansto visuaize 3D
MRI datasets. This section provides a brief background of the problems surrounding
accurate segmentation of tumors from human brain images and accurately computing the

volume of thesetumors. A discussion isincluded on an dternate implementation of the

MRI application using the Python programming language and the segmentation and
volume computation features that have been added to the origina implementation.
Reaults of the segmentation and volume computation agorithms are portrayed through
the presentation of three MRI datasets of the human brain.

There exist an opportunity for much future work to be performed using each of
the gpplications mentioned above, thus each mgjor section includes a sub-section

detailing possible future features that could be added.

Chapter 2

Interactive Visualization of M obile Network Simulations

2.1 Background Information and Problem description

A mgor chalenge faced by mobile network service providersisto guarantee its
customers an acceptable Quality of Service level. With the recent proliferation of mobile
network use by both the public and the private sector, the demand placed on these
networksis growing a an astronomical rate. Another factor that is complicating this
problem even further is the merging of voice and data transmissions onto the same
networks.

Users of these mobile networks expect to be able to user their mobile device
whenever they like and have a guaranteed leve of service provided. In addition, these
users expect thislevel of service to be extended throughout their period of use on the
network, regardless of changing conditions the network experiences on a constant basis.
The networks generdly experience burdts of demand for access and need to have some
means of dealing with this demand under dl possible network conditions.

Congestion on the mobile network can arise from numerous sources, some which
are part of the actua network architecture, and others that are completely independent of
the network itself. Examples of network congestion sources include failure of hardware
or software the network is built upon, times or areas of peak demand, such as during rush
hour or around traffic accidents, current westher conditions, and the topography of the
surrounding landscape. These are dl factors that must be considered and dedlt with in
developing a process for adaptively dlocating network resources as required by the

current state of al the present variables [2,3].

A mobile network is composed of severa base gations, each of which covers
some defined areq, referred to asa‘cell’. Asauser travels from one cell to another on
the network, they must be trangtioned from the base sation currently handling their call,
to the base ation in the cdll they are entering. A procedure must be in place to alocate
resources for this trangtion, while not unnecessarily blocking potentia new cdls. The
resources that must be alocated are the available channdls each base ation has
avalable. It isimportant to note that these channd's are not only limited by monetary
factors, but thereis alimited frequency spectrum for these channels to use, hence the
need for adaptive agorithms to alocate resources according to the variable state of the
network.

Dr. Dahlberg and Dr. Subramanian have worked towards developing Adaptive
Admission Control algorithms to recognize the current state of the network and to
dynamicaly dlocate resources based upon the identified state, and accurately measure
the performance of these dgorithms. These dgorithms must have the capability to react
to multiple variables that are constantly changing, and sometimes changing at adramatic
rate. Dr. Dahlberg and Dr. Subramanian point out that there is amgjor tradeoff in
deve oping these agorithms with distinguishing between red problems on the network in
which the dgorithm needs to address, from normd burst activity that the algorithm
should ignore. Thus, mgor focus is placed on the sengtivity of the agorithm. Dr.
Dahlberg and Dr. Subramanian experimented with four Adaptive Admisson Control
dgorithms, which are described in detail in[1]. Asasmple and brief description, these
agorithms al monitor some defined, real-time metric and vary a guardband, referred to

as d, which defines the percentage of channels available for new-cdl requests and the

percentage of channds set-aside for necessary handover requests. A handover request
occurs when auser is traveling from one cedll to another on the network and needs to
switch to the base gation of the cdll they are entering, while anew-cal request occurs
when anew user attempts to gain access to the network. This alocation policy must be
able to adapt to provide an optima level of service to the customer under varying
conditions such has anormal load versus a heavy load or under network falure
conditions.

Numerous metrics are defined and explained in [1,2,3], two of which | will define
here. These two are handover blocking rate (HBR) and new connection blocking rate
(NBR). These were the main two metrics | used when testing the new fegtures | added to
Mobvis, so | will limit my description of metricsto these. HBR describes the percentage
of handover requests denied which result in the termination of the connection. The
following formulais defined in [1] for HBR:

HBR = (S handover requests denied)/(S handover requests)
The datais summed over a predefined period of time. NBR describes the percentage of
new connection requests that are denied. The formulafor NBR is given by:

NBR = (S new connection requests denied)/(S new connection requests)
The four Adaptive Admission Control agorithms mentioned previoudy, examine HBR,
itsrate of change or derivative, NBR, and its rate of change, respectively. Oncethe
smulations are run using these different agorithms, a means of examining the results of
the alocation policy the agorithms invokeis needed. We need amethod of comparing

the effects of varying conditions, such as network failure or extreme demand, on each of

the agorithms and how they handle such conditions. This analyss needs to be performed
on both a spatia and tempora basis.

Furthermore, an Adaptive Admisson Control dgorithm must monitor the network
and evaluate the system at each cell Site, or base ation, on the network. Given thisfact,
agmulation run over even ashort period of time resultsin an explosion of data that
needs to be quickly and accurately andyzed to determine the effectiveness of the
agorithm under scrutiny. Traditionaly such andyss has been performed through
datistical methods and 2D plots of the data over time. Unfortunately these methods do
not lend themsaves well to the multivariate nature of the data we are attempting to
andyze. Datavisudization provides a powerful aternate method of analyzing the results
from the network simulations on the required tempora and spatial bases[1,2,3].

2.2 Description of Mobvis

Mobvis, developed by Dr. Subramanian and Dr. Dahlberg, is an application that
provides 3D visudization of the redl-time metrics described in the previous section. The
visudization tools are congtructed using the Visudization Toolkit (VTK) [4], and the
GUI is congructed using OSF/Moatif. Mobvis displays the smulation runsin a
Spreadshect style layout, alowing for comparison of avariable number of metrics from
the different algorithms at once [2]. Spreadsheets have traditionally been extremey
effective for interacting and manipulating numerica data. The benefits of usng the
Spreadshect layout for visudization of large and complex multidimensond datassts are
presented in [5]. These benefitsinclude auser’s ahility to view multiple visua
representations of different datasets at once, perform actions on these visudizations, and

visudly compare the datasets. Such advantages prove very useful in the visudization of

mobile network metrics from different algorithms over time. A screen shot of the
application is provided below:

Figure1l: MobvisApplication

=y mobvis J#iE

Fila Frafarancas Staar Wiaw Hatrlics

R

Window EBize

i:mu

Sanpling Interval

Upslates Metrcios

MOBVIS

HohVis Moda

] Sl

LB R A U2

Input Filaes:sim_scanario Lii

i I‘“!‘lu:r e Bteer

Lanl e

The origina implementation of Mobvis provides three different types of
visudizations. These are 1) color mapped planes, where metric values are mapped to a
st of colors, 2) height fields (two types of height fidlds are available), where metric
values are scaled and mapped as a height, and 3) pardld coordinates, where the metrics
each are represented on their own vertical axes[1]. In Figure 1, above, one of the

available height fidd visdizations is shown.

One of the additions | implemented was to provide a fourth visudization, which is
an iso-surface of the entire time span over which the smulation isrun. This fegture
alows the user to view areas where a chosen vaue occurs for the metric in question over
the entire time gpan of the smulation run without needing to move through the
gmulation. More details on this fegture are provided in the following section of the
report.

Moabvis provides the ahility to run the smulation and view the data through VCR
style controls dong the bottom of the gpplication. The user may choose ether the ‘Play’
or ‘Steer’ mode. Whenin‘Steer’ mode, the actud smulation is being run. Whilein
‘Play’ mode, the user is smply moving through pre-computed sequences of the
smulation. The user must firg create asmulation by using ‘ Steer” mode and then may
rewind/fast forward/play through that Smulation usng ‘Play’ mode.

VTK provides an interactor into the visudization window that alows the user to
manipulate the visudizations through scaling, trandation, and rotation. Users are ableto
compare the data from any visua perspective they prefer through this capability.

The use of data visudization proved extremedy vauable to Dr. Dahlberg and Dr.
Subramanian in thelr andyss of the dgorithms under testing. Their results, including
why their conclusions could not have been reached without the aid of data visuaization
aredealedin[1]. Inthe conclusion of their paper, they suggest severa other
possihilities of visudizing the data through different methods, which could prove even
more useful in andyzing the Adaptive Admission Contral dgorithms. My work involved

implementing some of these dternatives.

2.3 Modifications and Additionsto Mobvis

One suggestion from Dr. Dahlberg and Dr. Subramanian was to implement a means
of investigating the spatid relationships between the metric vaue in one cdll with the
metric vaue in its neighboring cells. This could perhaps provide ingght into the effects
of the agorithm being used on neighborhoods of cells, rather than isolated cdlls
themsdlves.

Asapotentid solution to providing such atoal, | implemented alow pass ptia
filter to be gpplied to the metric values over the entire region of cdls. The smulation
provides aregion of 90 cdls, in ahexagond layout. The layout of the cdlsis shown
below in Figure 2, reproduced from [1].

Figure2: Layout of mobile network cellsfrom [1].
(745

As can be seen from above, each cdll in the network will have six neighbors, one
directly above, one directly below, and one positioned at each of four diagona positions.
The metrics, once computed for the smulation run, are stored in a three-dimensond
array, which isindexed by 1) the metric being computed 2) the time step of computation
and 3) theid of the particular cdll the metric is computed for.

According to [6] the key requirement for such alow pass spatid filter isthat al
coefficients of the filter be pogitive, which can readily be achieved by making the

coefficient for each cell equa to 1/X, where X is the number of celsthefilter is goplied

to. Inour scenario, there are saven cdlsto apply the filter to: the current cdll, and its Six
neighbors. Using this method, each cell receives a value equd to the average of itsvaue
with the vaues of issix neighbors. Thisis commonly referred to as neighborhood
averaging.

The three-dimensiond array containing the metric vaues described aboveis
maintained in the mvisMetric class of Mobvis. | added the functiondity of gpplying this
gpatid filter in the mvisMetric class dong with the computation of the metrics
themsdves Thefirg step in implementing the averaging filter was to provide a means of
computing the address of each cdll’s Sx neighbors. Even though the cells are offset in
this hexagond layout, finding the address of the sx neighbors was fairly straightforward.
Each cdl’s Sx neighbors are in exactly the same location relaive to its own location, thus
| was able to smply subtract/add some constants to each cells address and | had the
addresses of each cdlls neighbors. The next step was to sum the vaues of the metricsin
each of the seven cdls and assign this vaue, divided by seven, to the current cell.

The metrics are computed one cell a atimefor eachtime step. Sinceacdl’s
neighbors consst of three cells beforeit in the three-dimensond array and three cdlls
after it in the three-dimensiona array, the averaging could not be performed until dl
metric vaues were computed for that time step. Once the computation for the current
time step is complete, the agorithm iterates through the three dimensiond array, applying
the filter to each cdll, and then dlows the metric computation module to proceed to the
next time step. Figure 3 and Figure 4 display screen shots of the result of gpplying this
low-passfilter to the HBR and NBR metrics. The two different figures are provided to

portray the two types of height field visudizations Mobvis provides. In both figures,

10

HBR is the metric displayed on the top row on the far |eft and NBR isthe metric
displayed on the top row on the far right. The result of the neighborhood averaging for
HBR is shown in the bottom row on the left and the result of the neighborhood averaging

for NBR is shown in the bottom row on theright.

Figure 3. Spatial Averaging of HBR & NBR —Using first type of Height Fields

NBR_SP avg
Time: 3600

11

Figure4: Spatial Averaging of HBR & NBR — Using second type of Height Fields

MOBVIS

HBR SP _AVG NBR_SP_AVG
E 3 Time: 3700

Figure 3 and Figure 4 clearly show the effect of neighborhood averaging on the
metric valuesfor each cdl in the network. The result iswhat was expected, in that the
smoothing of the valuesis evident and large peak vaues for the metrics have been spread
out anongst the cells neighbors.

Another feature | added to Mobvis, was afourth type of visudization, which
alowsthe user an dternate means of comparing asingle metric over the entire time span
of the amulaion. Thisvisudization type was achieved by creeting an iso-surface from

the value of a particular metric over the entire time the Smulation was ran. Theiso-

12

surface visudization is now accessible from the ‘ View’ menu as an additiond
visudization type.

When a user selects the iso-surface option, they are prompted to enter the metric
in which they would like to see the iso-surface for, dong with the value around which
they would like to see the iso-surface congtructed. This mandates that the user have an
idea of what vaue they would like to look for. To meet this demand, a means for the
user to query the value of the metric they were curious about was added. Mobvis aready
supported picking of the actors that represented each cdll in the visudization. The
functiondlity that needed adding was to have the cdll id of the picked cell dong with both
the scaded and unscaled vaue of the metric displayed dong the message bar at the bottom
of the gpplication. It was necessary to include the unscaled vaue, because thisisthe
vaue actudly stored in the three-dimensiond aray, thusif auser would like to view the
iso-surface for a particular vaue, the unscaed value is what they must enter.

Once the user inputs the metric they are interested in, and the vaue the agorithm
should construct the iso-surface around, the current visuaization is removed from the
visudization window and the iso-surface is displayed. Figure 5 shows the iso-surface

congructed from the HBR metric using anon-scaled vaue of 0.15.

13

Figure5: |so-Surface Of HBR with unscaled value of 0.15.

Figure 5 shows the occurrences where the value of HBR rose above 0.15. This
image is taken from an orientation that begins with time 0 on the l&ft, and runs to the end
of the smulaion on theright. The iso-surface can be manipulated in the same manner as
the other visudizations, so the user can rotate the image to view the location of the cells
where these i so-surfaces are occurring.

The iso-surface functiondity has been added to the VisudizationPandl object of
Mobvis, with related functionsto call and support the procedure in the GUI object and
the MvisVtk object. The metric valuesfor the cells a each time step are input to a

vtkStructuredGrid object, which is a dataset whose structure is topologicaly regular, but

14

whose geometry isirregular [4]. Theiso-surface is congtructed using the marching cubes
agorithm, which isdescribed in [13]. Basicdly, the marching cubes agorithm creates a
contour surface at a constant scalar vaue from the vtkStructuredGrid object.

The added functiondity of having the ability to view ametric for dl network cdls
over the entire time span of the smulation run provides agreet advantage in atempora
andyds of the agorithm being used. Without this feature, the user must fast forward or
rewind through the smulation run to visudize the changing vaues of the metricsasa
result of the alocation policies put in place by the Adaptive Admission Control
agorithm. The user can get an idea of how fast the system recovers from failures on the
network or increased demand much quicker by smply viewing the iso-surface and
examining how long the contour surfaces are, rather than moving, time-gtep by time-step,
through the smulation run.

2.4 Future Work

With these new festures added to Mobvis, there are till numerous additions and
modifications that could be made to enhance the value this gpplication hasin the
visudization of metrics from mobile network smulations. The neighborhood averaging
functiondity was added to Mobvisin amanner such that it can perform the averaging on
any metric the user chooses. This function could be improved by implementing amore
sophisticated low-pass filter method, perhaps by using a sampled Gaussian function to
perform the averaging. In addition, other methods of determining the relaionship of the
metric vaues between cdlls should be explored. To add to the iso-surface feature, it
would be ussful to have the ahility to view the iso-surface for multiple metrics at once.

Currently, when the user is asked to input the metric to create the iso-surface for, they do

15

not have the ability to input multiple metrics. Also, it may prove useful to be ableto
create multiple iso-surfaces at different values for a particular metric, perhaps
distinguishable by varying the color of the iso-surface.
2.5 Mobile Visualization Summary
With mobile network technology improving a such arapid pace, the need to
andyze data crested as a result of the policies implemented to manage the network will
persst. Datavisudization has proven itsdf avauable tool in the andyss of data from
this domain and will continue to play a prominent role in the advancement of thisfield.
The Mobvis gpplication has proved itsdf avauable toal in efficiently andyzing
enormous amounts of data crested from mobile network smulations. The additions and
modifications described in section 2.3 extend the gpplication’s functiondity and will
increase researchers ability to andyze the performance of Adaptive Admission Control

agorithms.

16

Chapter 3

3D Segmentation and Quantification of Brain Tumors

3.1 Background Information and Problem Description

A revolution is currently occurring in the medicd arena. Therate a which
medica imaging technologies are being improved is accderating rapidly. Imaging
technologies such as computed tomography (CT), positron emission tomography (PET),
magnetic resonance imaging (MRI), and ultrasound, are dl dlowing for large strides to
be made in the detection and diagnosis of certain medica problems.

Medicd imaging technologies dlow physcians and scientist to non-invesvey
view theinternd structures of the human body. Life-saving information can be gathered
from asmply using these technologies for the visudlization and inspection of anatomica
gructures. In theingtance of brain tumors, MRI images provide physicians with ameans
of detecting the existence of atumor and visudizing the location of the tumor in two-
dimensond planes. Imaging technologies are now being used in an even more profound
sense, in that today these technol ogies have been expanded for the use of surgica
planning and surgica amulation. If physicians can detect the shape of a brain tumor, its
volume, and its location in a three-dimensiond visudization of the brain, they could
determine an optimal plan of gpproach prior to surgery. Having such detailed
information prior to surgery would prove extremdy useful for the physician, and would
dlow for reduction in damage to hedthy tissue surrounding the tumor.

With medica imaging technologies being devel oped further everyday, and new
uses for these technologies being redlized, the need for anadlyss of the images these

technologies produce isincreasing. We need not only to extract the structures of interest

17

from these images, but we need the capabiility to quantify and describe these structures.
Smply trying to ssgment structures, such as tumors from a human brain, can prove a
daunting task. Shapes of anatomical structures tend to be extremely irregular and
complex, making the task of extracting an accurate representation of these structures very
difficult. Once we have a geometric representation of a structure, we can then proceed to
quantify this structure [7].

3.2 Objective of Project

Dr. Subramanian had previoudy developed an application that provided a means
to visudize MRI datasetsin both the three two-dimensiond views (axid, corond,
sagittal) and athree-dimensional view constructed as a contour surface. The objective of
this project was two-fold.

Thefirg objective was to experiment with an aternate implementation of the
current gpplication. We were looking for an implementation that could provide the same
functiondity at the same speed, but that would be much smpler to maintain, extend, and
port to other environments. We needed to have the capability of quickly adding
interactive GUI features to the gpplication for procedures such as interactive
segmentation of tumors from the MRI datasets the gpplication was designed to visudize.

The second objective was to actudly extend the MRI application to provide the
functiondity of interactive 3D segmentation of tumor volumes from brainimages. After
segmenting the tumor from the hedthy brain tissue, our god was to provide an estimate
of the volume of the tumor segmented. This gpplication would provide physcians with a
meansto interactivey view a 3D visudization of the human brain with the tumor

segmented within thet visudization. Making it adifferent color in the visudization

18

makes the tumor digtinct from the hedthy brain tissue. Physicians could interactively
move the visuaization through rotation, scaling, or trandation. While having this
visudization before them, physicians would dso be able to view an estimate for the
volume of the tumor they are inspecting. As mentioned previoudy, this could provide a
great advantage to the physcian in pre-operative planning.
3.3 Description of current application

The gpplication Dr. Subramanian developed allows a user to read MRI datasets
into the application and congiruct visudizations of the datasets. The gpplication was
build to accept both the 3D .dset format, or a series of 2D imagesin the MR format. The
visudization tools are implemented through the Visuaization Toolkit (VTK) [4] and the
GUI isimplemented usng OSF/Matif. A screen shot of the gpplication is provided

below in Figure 6, with the mri2.dset dataset |oaded into the application.

19

Figure6: MRI application

As can be seen from Figure 6, once a user chooses to open a dataset, the axidl,
corona, and sagittal views are displayed in three windows on the right Sde of the
application and a 3D view is congtructed in alarge window on the left. The user hasthe
optionto turn the 3D view on/off as necessary, as condructing the visudization requires
agrest ded of computation. The 3D visudization is congiructed by forming a contour
surface, which is achieved by using the marching cubes dgorithm. The marching cubes

agorithm is described and explained in detail in[13].

20

The user has the capability of scrolling through the entire dataset dice by dice a
each one of the 2D views by moving the dider barsto the left of the viewing window.
Also, if auser pogitions the mouse in one of the 2D viewing windows and clicks the left
mouse button, the other two 2D windows automatically update to display the point
chosen in the respective views. Scales are aso provided to change the brightness of the
2D images to improve manua feature detection.

Moving the dider bar labeled ‘1sosurface Vaue under the 3D viewing window
will change the iso-vaue at which the contour surface is created. The opecity of the 3D
visudization of the human brain can be changed by changing the vaue of the dider bar
labeled ‘Opacity’. VTK aso provides the capability of interacting with the 3D
visudization through scaling, rotation, or trandation. This dlows the user to gain aview
of anatomica structures of interest from any perspective they like.

3.4 The Python | mplementation

As dated in the introduction of this section, the first objective of this project was
to experiment with an dternate implementation of the MRI gpplication. The desire was
to implement averson that provides equivadent functiondity and efficiency, yet would
be smpler to extend and smpler to port to other environments.

The programming language chosen to implement the new version was Python.
Python is an interpreted and interactive objective-oriented programming language.
Python is most often compared to languages such as Perl, Tdl, and Java. Python provides
an excdlent means of creating GUI’ s through the use of the Tkinter module. Another
advantage found with using Tkinter and Python isthet they are extremely portable.

Python runs on al mgor operating systems. UNIX, Linux, Windows, Mac, and OS2.

21

Thiswould be an enormous advantage over the current application built using the
XIMoatif libraries.

Python provides extremely quick turnaround in creating GUI gpplications.
Developers can often make changes to a GUI and see the effect of those changes within a
meatter of minutes. With Matif, thisisrarely possble. Programming the GUI with Matif
isfar more complicated, and of course with C++ code, it has to re-compiled each time
changes are made. With Python being an interpreted language, re-compilation is
unnecessary.

The one mgor weskness found with Python is that like al dynamic languages, it
isnot asfast and efficient as C++. In many domains this does not present a problem, as
the difference would be indistinguishable [8]. But for the visudization of large 3D
datasets, and to be able to interact with these visudizations, we need as much speed and
efficiency aspossble.

Thus, the planned design for the new version of the MRI application was to build
the GUI using Python and Tkinter, and call C++ extensons from this GUI to do dl
computationdly intensve tasks. With this plan in mind, | began reading books about
Python and experimenting with smple GUI examples from these books.

With the Python implementation, we still needed to be able to use VTK to provide
al of thevisudization tools. Fortunately VTK provides extensons to be used with the
Python programming language. In particular, the vtk TkRenderWindow module was most
useful. Thismodule provided exactly what we needed: aVTK window that could be
embedded in a Tkinter GUI. From this point | was able to begin congtructing a GUI as|

learned more about the Python syntax, while including some VTK functiondity as well.

22

Figure 7, below, shows one of the earliest GUIs | created using Python and Tkinter with a

VTK window.

Figure 7. Python GUI 1

=i 7

Python Interface for MRI App

Hle View Menu

Slider 1

Slider 2
0

Canvas For VTK Rendering...

 JR

2D MRI Images Here...

1
Quit | |

The VTK window is displaying a 3D cone, which can be rotated, scaled, or

trandated, just asthe 3D visudization of the human brain could be manipulated in the

origina implementation. From this base GUI | began adding widgets building up to a

GUI that would provide dl of the same functiondity as the origina implementation.

In the origind implementation of the MRI gpplication, the large window for the

3D visudization was aVTK window, but the three smal windows for the 2D views were

OpenGL capable X windows. OpenGL was used to render these windows directly

23

because this provided much faster redrawing and smoother trangitions from dice to dice
than VTK. Intheorigina implementation, if the user moves the diding scale for one of
the 2D views, the new dice is drawn ingantly; thereis no delay whatsoever.

Python does not directly provide a means of creating OpenGL capable windows.
| was able to find PyOpenGL online, which isacross platform Python binding to
OpenGL. We experimented briefly with PyOpenGL, but it turned out to not support the
particular functions our application required. | proceeded with developing the GUI, using
VTK windows for the three 2D views. At least in this case we would have to opportunity
to seejust how bad the performance could be for VTK from within the Python interface,
perhaps it would not be unacceptable

Figure 8 below shows the completed Python GUI, with al four visudization

windows being implemented as VTK windows.

24

Figure 8. Python GUI 2

FPython Interface for MRI App

Hie MRl (MRl Wiew
al | A n| | sice

|

| moSurface Vae Opacity
0

0 view O |

== fo
Message Area here

Again, the 3D window is shown containing a 3D cone, created by using tools
from VTK, which can be rotated, scaed, or trandated. This GUI provides al the same
functiondity asthe OSF/Motif GUI provided, with dl the same menus, dider bars, and
windows. The next sep wasto begin integrating the C++ functions from the origind
goplication to perform the computationaly intensive tasks.

| began by extracting the function that reads in the MRI datasets from the mri

object of the origina application. | modified this function dightly so that | could use

25

SWIG, which isatoal that wragps a C++ function to be called by a scripting language.
SWIG isnot limited to use only for Python, but will also wrgp C++ functions to be used
with awide variety of scripting languages, such as Perl and Tcl/Tk, and even some non
scripting languages such as Java. To use swig, you Smply haveto create a.i input file
that describes the C++ function that you would like to wrap. | crested a shared module
from the C++ function to read in the MRI datasets that could be called from the Python
GUI. Thisiswhere the problems began with usng Python and C++ extensons.

Python does not support pointers, so there was a problem with trying to return this
aray of vaues from the C++ function that read in the MRI dataset to the Python GUI for
rendering. In both the Python and SWIG documentation, it is stated that SWIG should
wrgp the function in a manner that the array could be returned as a PyObject to the
Python application. Unfortunately, after many attempts and many questions submitted to
the Python and SWIG mailing ligs, this solution never became aredlity.

The work-around was to return each of the values read in from the MRI dataset
one at atimeto Python. Thisworked fine, but the dataset | was using for testing
contained 6,129,456 vaues, and other datasets could be larger than this. Needlessto say,
reading this datain and passing it from the C++ function to Python one value a atime
was very dow and inefficient. It took between two and three minutes to read in the entire
dataset. The origind implementation read the dataset into the application and created the
vtkStucturedPoints object in less than fifteen seconds. With this we faced the first mgor
drawback of using two different languages to implement this application. After further
researching of the capabilities of the Python language, | was able to implement the

functiondity of reading the dataset in using Python done. This solved the problem for

26

the present moment. Even though this method was dower than the C++ function, it took
less than one minute to read in the dataset, which was good enough to proceed. Yet the
larger problem remained: How well would this implementation perform with the
computationaly intense task of congtructing geometry for the visudizations? And if the
performance were poor, how would we move the data efficiently between the Python
gpplication and C++ extension modules to perform the number crunching? Regardless,
the system was functiond at this point, and in hopes of a solution or some novel
suggestion from the mailing list, we pressed on with the development. At least now we
would have the opportunity to experiment with the visudizationsin Python since the
datasets had been read in.

The next step, now that | had the data into the Python portion of the application,
was to begin congructing the 3D pipeine to creste the contour surface for the 3D view of
thebrain. This process was fairly straightforward, since the pipeline was aready
avalablein the origind implementation; | just had to rewrite the pipeline in the Python
gyntax. Figure 9, shown below, is a screen shot of the Python MRI gpplication with the

3D contour surface of the human brain visble.

27

Figure9: Python MRI Application with 3D view functional

la BRI TME]L Whewr

0 Surtace Yalie Opacity
] 0 Raal 2 A0 Waw On 20 View On [5L) 20 Emwr O [WTK) | GuIrT |
] | ==

Mpssage Area herg

The contour surface is crested using the marching cubes agorithm, identically as
in the origind implementation. This visudization provides dl of the same functiondity
of being able to rotate, scale, and trandate the image. Surprisingly enough, the speed at
which Python handled the task of rendering this object was very good. There was no

noticeable delay when manipulating the object and the performance was quite acceptable.

28

With Python performing this well with the 3D visudization, | proceeded to
implement the 2D views using the vtk TkRenderWindow mentioned previoudy. To
congtruct the 2D views using VTK, the values from the dataset for each dice were used
asinput to a vtk Texture object, which handles loading and binding of texture maps [4].
The texture map was then mapped onto a vtkPlanesource for rendering. Oddly enough,
even when alookup table was created to scae the values to produce a gray-scae coloring
for the 2D images, VTK was rendering the texture maps in a bright orange-red. Thiswas
unacceptable, but fortunatdly, through posting this problem onthe VTK mailing lig, a
solution was found. The problem was where the lookup table was being assigned in the
2D pipdline. Once this problem was fixed, the 2D views were functional. The process of
adding the functiondity of updating the 2D views with the gppropriate dice according to
ether the movement of the mouse in one of the other two windows, or the movement of
the dider scale, was another exercise in code conversion from C++ to Python. The
necessary agorithm and functions were available in the origina implementation; | had to
amply implement the same methods using Python.

Figure 10, shown below, is a screen shot of the application with both the 3D view
and the three 2D views functional. The dataset which isloaded into the gpplication for
this screenshot, is the mri2.dset dataset, which is the same dataset used in Figure 6 of the
origina MRI gpplication. It can be clearly seen from a quick comparison of the two
screenshots that the Python implementation resultsin identical visudizations of the

dataset being examined.

29

Figure 10: Python MRI Application

e MR IME] Wewr

tan Burace Valie Aty
1 o Road 2 3D Wiew On [20 Viaw On (GL) | 20 View On (VTK) | QuiT

[—3 CT]
MEssage AFEA e

Despite the visudizations produced being identicd, there was a problem with the
Python verson. The performance when updating the 2D views was extremely poor.
When auser moves the dider scales, or clicks the [eft mouse button in one of the other
two 2D views, there is a very noticegble delay in the updating of the 2D view to the

correct dice. Worse even, if auser dragsthe dider scde from thefirst diceto the last

30

dice, the updating cannot keep up with the movement of the scale, hence the gpplication
drags, and the view jumps through only afew of the dices from the beginning of the
dataset to the end. Thisis unacceptable, asthe 2D views need to update very smoothly as
the user drags the dider scale.

As asolution to speeding up the updating of the 2D views, | pre-computed an
array for every possible dice of the dataset for each of the three 2D views. This solved
the problem, as now the views would update very quickly and smoothly since the new
data ssmply had to be assgned and rendered. No computation was necessary when the
view needed to be updated. But, as with many solutions, this created a new problem.
The time taken to pre-compute the arrays containing dl of the dices of the dataset turned
out to be absolutely unacceptable. This pre-processing step takes between four and five
minutes. Thistime, added to the time it takes to read the dataset into the gpplication,
makes the use of thisimplementation unfeesible in ared-life scenario. No physcian
would be willing to wait thislong for the application to complete its pre-processing step
each time they need to useiit.

Even though, at the present time, the Python implementation is not afeasible
replacement for the current MRI gpplication, the god of experimenting with an dternate
implementation has been achieved. Many vauable lessons were learned from building
this gpplication in Python, and groundwork has been set for further work. PyOpenGL is
anew tool, and is under continuous development. In the very near future, the problems
experienced with thistool may be remedied, and the Python implementation could

become a substitute for the C++ implementation.

31

3.5 Tumor Segmentation and Quantification

The second objective of this project was to extend the current MRI application so
that it would provide users with the ability to segment tumors from hedthy brain tissue,
Once the segmentation was complete, we wanted to provide ameansto view a3D
visudization of the tumor within the brain, with the ability to interact with this
visudization. Findly, weintended to provide ameans of esimating the volume of the
segmented tumor, and display thisinformation to the user as they inspect the 3D
congtruction.

Image segmentation is defined as the subdividing of an image into its condtituent
parts or objects. Developing an dgorithm to automatically segment an image is one of
the mogt difficult tasks in image andysis, yet is one of the most crucid to the success of
the andlysis[6]. Inour system, we are not attempting automatic sesgmentation. The
segmentation agorithm is designed to work from an input that will require the user to
have some prior expertise in thefield of interest. Since this gpplication is being
developed for the use of physicians, this prior expertise of the subject areais readily
avalable

Images produced from MRI scanning are gray-scale images, thus the datasets we
are attempting to segment range in vaue from 0 — 255. Segmenting gray-scde imagesis
typicaly approached with one of two different Srategies. 1) Look for discontinuity in
the image or 2) Look for smilarity intheimage. When searching an imeage for
discontinuity, the god is to segment the image according to rapid and drastic changesin

the vaues of the pixds. This strategy lends itself well to point, line, and edge detection.

32

With the second drategy, the agorithms are typicaly based on some region growing,
gplitting and merging, or thresholding gpproach.

Edge detection is the most often used means of searching an image for
meaningful discontinuities. An edge is defined as a boundary between regions of an
image with distinct intengty properties. Thismethod is most often used when the two
regions separated by the boundary are reasonably homogenous, to the point that
digtinction could not be made between the two by comparing the intendity of each area.
The basic strategy of most edge detection dgorithmsis to goply some loca derivative
operator to each region of the image to detect the regions where the intengties change
rapidly. Thistechnique will result in aset of pixelsthat define the boundaries of regions
intheimage. Unfortunately, this set of pixesistypicaly broken up due to noise or
atifactsintheimage. To complete the segmentation, alinking agorithm isusudly
applied to each pixe that underwent segmentation in order to define a continuous
boundary between image regions. Brain tumors tend to have very irregular shapes with
extremely jagged edges apparent in MRI datasets. Also, using the correct MRI protocol,
the tumor pixels do not have smilar intendties to the hedthy brain tissue. For these
reasons, we did not begin our segmentation attempts with edge detection Strategies.

Region growing is a popular means of segmenting images on the bags of
searching for regions of smilar intendty. Asone may expect from the name, this
approach attempts to ‘grow’ aregon from some starting seed point. This Srategy
congtructs the region being segmented directly, rather than detecting edges and
constructing regions based on these edges. Region growing typicaly produces better

results images where distinct edges are not easily identifiable than the edge detection

33

strategy described above [6]. Tumor volumes found in the MRI datasets we are
attempting to segment fal into this category, thus implementing asmple region growing
agorithm was the plan of action devised.

Region growing agorithms need an input, typicaly referred to asa* seed point’ to
begin searching for points in the dataset with smilar vdue. Thisinput can beasngle
point or agroup of pointsin the dataset. The agorithm must dso have some defined way
of measuring whether each data point it encountersis part of the region being segmented
or not. Theagorithm | implemented checks the value a pointsin the dataset to see if
ther intengty fals within some tolerance threshold of the region. Thisthreshold isthe
second input required by the algorithm.

The dgorithm begins with the seed point chosen by the user of the system and
begins checking the point’ s twenty-six neighbors, in 3D space, to seeif thelr intengty
vaue fals within the given threshold of its own value. This process continues
recursvely, consdering the neighbors of each pixd thet is added to theregion. The
function will return control to its caling function once no points defined to bein the
region have neighbors nat in the region with a vaue thet fals within the give intengty
threshold.

The addresses of apixel’s neighbors, rdative to its own addressin the array, are
computed to determine which pixels the dgorithm should investigate. Connectivity of
data points in the dataset is of crucid importance to the region-growing agorithm.
Smply investigating the intengity of every data point in the array would not only be

wadteful, but would yidd vastly mideading results. We are only interested in data points

that fall within the given intensity threshold and are connected to another point in the
region grown from the seed point.

Two problems that arise with region growing dgorithms can be the difficulty in
selecting an appropriate seed point and the defining of a suitable threshold to determine
whether apixel should be added to the region or not. We are depending upon the user’s
ability to select the appropriate seed point to begin the dgorithm. Once an appropriate
seed point has been sdlected, the threshold can be selected on atrid and error basis by
moving adider scale to indicate the desired threshold. Thisisan ided setup because it
dlows the user to vary the threshold and view how well the segmentation coversthe
region of thetumor. The user can then vary the threshold up or down, dependent upon
the results of the segmentetion.

Another issue that is often viewed as a problem with the region growing gpproach
to image segmentation is that these agorithms have the tendency to grow holesin the
segmented region. If data points exist within the region of the tumor that have intengity
values outsde the given threshold, the region growing agorithm will actualy grow
around this data point, leaving a hole in the tumor. While this can produce undesirable
results, in our case this property actudly proved very useful in one of the test cases
presented later in this paper. The opportunity to exploit this feature became apparent
when one of the data sets we tested the agorithm on contained atumor with acys. The
region-growing agorithm segmented the tumor, but grew around the cyst. This was not
anticipated, but it turns out to be exactly what we need for accurate volume computation

on the tumor since the volume of the cyst should not be included. 1t so provided the

35

opportunity to segment the cyst from the tumor and compute its volume. Thisis
discussed further in the presentation of the results.

To implement the region-growing agorithm, | modified the GUI object, the MRI
object, and the MriVtk object. The GUI was modified to include a button for the user to
click to run the segmentation procedure. A diding scale was aso added for the user to
select the threshold the procedure should use. These two additions to the GUI were
placed directly undernesth the three 2D views. The 3D pipdineis condructed in the
MriVtk object, which had to be dtered to include an additiond pipeline of objects for the
3D visudization of the brain tumor. This pipeline was crested identicd to the pipeline
for the 3D visudization of the brain itsdf. The tumor will be represented as a contour
surface created from the marching cubes dgorithm. A vtkStructuredPoints object was
aso added to the MriVik class, which maintains the data identifying which pointsin the
dataset are part of the tumor region and which points are not. This vtkStructuredPoints
object is created as the same Size as the object containing the MRI dataset read into the
goplication. With the segmentation information being maintained in this manner, two
contour surfaces can be constructed, one from each of the vtkStructuredPoints objects,
and the resulting visudization will place the segmented tumor vaue in the accurate
location relative to the remaining portion of the brain. |1 distinguish between the two by
coloring the tumor blue and the remaining portion of the brain red.

When auser clicks the * Segment’ button, the appropriate callbacks handle the
request by caling the cal_region_growing() function which has been added to the mri
object. The MRI object iswhere the actual segmentation occurs. The

cdl_region_growing() function queries the location of the dider scaes for each of the 2D

36

views and calculates the corresponding address in the array of the seed value. Thus the
location of the diding scalesis the means in which a user can sdlect the seed point. This
can be achieved by ether moving the diding scales independently, or by choosing aview
where the tumor is most identifiable and moving the mouse to the region of the tumor and
clicking the left mouse button. Thiswill automaticaly updete the other two viewsto the
appropriate dices.

Once the address is computed, the region_grow() function is called and sent the
address of the seed point. Thisfunction has also been added to the mri object. This
function extracts the vtkScaars array from the vtkStructuredPoints object containing the
MRI dataset that has been read into the gpplication. This function o queries the value
from the threshold diding scae that determines the threshold that the intengity of adata
point must fal within to be incdluded as part of the tumor. This function then callsthe
find_region() function, which is the actud recursive function that performsthe
segmentation. Thisfunction first checks to be sure the seed point is not on a boundary of
the dataset and then cdls the find_neighborg() function to determine the twenty-Sx
neighbors that need to be investigated. Once thisinformation is found, the function
iterates through each of the neighboring data points identifying each as either part of the
tumor or not. If the data point is determined to be part of the tumor, the function calls
itself and the procedure repests. If the data point is determined to be outside of the
tumor, then the point is marked as visited but not tumor, and the iteration continues with
the next neighbor.

After the recursion completes, control is returned to the region_grow() function

which then iterates through the dataset and marks the segmented data points as either

37

edge points or interior points. This computation is performed to aid in our volume
computation discussed later.

Now the segmented tumor volume has been computed, and whenever the user
chooses to turn the 3D visudization on, both the origina contour surface of the brain and
the contour surface of the segmented tumor will be constructed.

The find festure added to the MRI gpplication was the quantification of the
segmented tumor. Another button was added to the GUI of the application that dlows
the user to run the volume computation routine. The callback function associated with
this button cdls the CacVolume() function. This function computes three estimates of
the volume of the tumor. The first two estimates are computed by counting the number
of voxds the tumor occupies. One estimate includes the edge voxds, while the other
excludes the edge voxels. Once the number of voxes of the tumor was determined, this
number is multiplied by the voxd gze. Thevoxd szeis maintained in the MRI object,
and can be dtered by the user through amenu option. The voxe Szeismaintained in
cubic millimeters, and we convert to cubic centimeters to report the volume. Thethird
volume etimate was computed by utilizing the vtkM assProperties object, which is
supplied by VTK. This object accepts the output from the marching cubes filter and
estimates the volume of the resulting object. The vtkMassProperties also provides a
means of caculating the surface area of the object, so we caculate this and report it to the
user aswell. After experimenting with severd data sets, and comparing the three volume
estimates, it became gpparent that the voxe count that excludes the edge voxdswas a

gross underestimation. Hence, this estimate was dropped, and only the remaining two

38

volume estimates, dong with the surface area, are reported on the message bar of the
MRI application for the user to view.
3.6 Results

Dr. John Brockway at Presbyterian Hospital in Charlotte, NC, provided al MRI
datasets used for experimentation and testing of the segmentation and quantification
dgorithms. Three of these datasets are presented in this section to display the results we
obtained. Each caseisidentified by the name of the dataset.
Case 1: jl1Flair.dset

The jl1Flair dataset was received in the MR format, and there were 30 corona
dices provided. Using a previoudy developed Tdl script, the series of MR images were
first converted to the SGI .rgb format, and then into the 3D .dset format. The jl1Hair
dataset dices were 3 mm thick and thefield of view (FOV) was 200x200 mm. All flair
datasets are taken as corond views, as opposed to SPGR datasets, which are taken as
axid views. The mri2.dset dataset thet is displayed in Figure 6 and Figure 10 isan SPGR
dataset. Since the flairs are taken from a different view, the location of the dices
corresponding to each of the 2D views in the gpplication is different. For thisreason, all
screenshots provided henceforth, show the corond view in the top 2D window, the axid
view in the middle 2D window, and the sagitta view in the bottom 2D window.

Figures 11, 12, and 13, show the corond, axid, and sagittal views, respectively,
of the jI1Fair dataset before segmentation. Upon ingpecting the corond view in Figure
11, awhite area just to the right of the center of the image should be noticed. Inflair

datasets, this indicates atumor mass. Thiswill be the area we attempt to segment.

39

Figure 11: Coronal dice 15 of jI1Flair.dset

Figure12: Axial dice 102 of jI1Flair.dset

Tumor Area

Corond, axia, and sagittal dices 15, 102, and 156, respectively, were chosen
because this seemed to define the best point in the dataset to use as the seed point for the
region growing agorithm. This point was decided upon by choosing a corona dice with
agood view of the tumor, and moving the mouse to what appeared to be the center of the
tumor. The other two views were updated according to the location of the mouse in the

corond view. The segmentation was run severa times, varying the vaue of the

40

segmentation threshold, and the threshold that appeared to yield the best results was a
vaue of 55. With these parameters set, the two volume estimates produced were 3.07
o and 2.54 e, Thefirst estimate comes from the voxel count, which indudes the
edge voxds, and the second estimate comes from the volume computed by the
vtkMassProperties object. The surface areawas computed as 28.27 cnf. Figure 14, 15,
and 16 show the same corond, axia, and sagittal views of the jl1Hair dataset with the

tumor segmented in red.

Figure 14: Coronal dice 15 of jl1Flair.dset

Figure15: Axial dlice 102 of jl1Flair.dset

41

Figures 17, 18, 19, and 20 show the 3D congtruction of the dataset. Figure 17 isa
frontal corond view of the dataset before ssgmentation. Figure 18 is the same view with
the segmented tumor now shown in blue. Figure 19 shows the image rotated dightly
counter-clockwise around the vertical axis. Figure 20 is aview from the bottom of the
image.

These different pergpectives of the image give the user a better understanding of
the location of the tumor relative to the rest of the brain. Anideaof the approximate
shape and Sze can dso be discerned from these images in conjunction with volume
estimates the application reports.

Figure 17: Frontal view of 3D construction before segmentation — jI1Flair.set.

42

Figure 18: Frontal view of 3D construction, segmented tumor in blue— jl1Flair.dset.

Figure 19: 3D construction dightly rotated around vertical axes—jl1Flair.dset.

Figure 20: Bottom view of 3D construction —jl1Flair.dset

Case 2. Flair44l.dset

The Hair441 dataset was received in JPEG format, and there were 24 corondl
dices provided. The JPEG images were first converted to the PPM format using XV.
The PPM images were then converted to the 3D .dset format using the previoudy
developed ppm2dset3D converter. The FOV for this dataset was 220x220 mm and the
thickness of each dice was 3mm.

The optima seed point was defined by corona dice 7, axia dice 146, and sxgittal
dice 161. Figure 21 shows these three dices, from top to bottom, before segmentation.
The tumor massis dearly identifiable in the upper right portion of the corond image asa
large white area. Figure 22 shows these same three dices after the segmentation has been

completed, with the tumor identified in red.

The threshold vaue used for segmentation in the Flair441 dataset was 65. The
volume estimates calculated were 26.83 et and 26.08 cnt™. Thefirst estimate being the
voxel count, including edge voxds, and the second estimate coming from the
vtkMassProperties object. The surface area computed was 83.99 cn?.

Aswould be expected from viewing the images, the volume of the tumor in this
dataset is much larger than the volume of the tumor in the jl1Flair dataset. Figure 23is
an image of the 3D view of the dataset before segmentation and Figure 24 isthe same
view with the tumor segmented in blue. Figure 25 provides asde view of the dataset and

Figure 26 shows aview from the top of the head.

45

Figure21: Coronal dice7, Axial dice 146, Figure22: Coronal dice7, Axial
Sagittal dice 161 before slice 146, Sagittal slice 161 after
segmentation — Flair441.dset

segmentation — Flair441.dset

46

Figure 23: 3D congtruction before segmentation — Flair441.dset

Figure 24: 3D congtruction with tumor segmented in blue— Flair 441.dset

47

Figure 25: Sideview 3D congtruction with segmented tumor — Flair441.dset

Figure 26: View from top of head of 3D construction — Flair441.dset

Case 3: s/Flair.dset

The s7Hair dataset was received in the .MR format and smilar to the
JI1Far.dset, it was converted from aseries of .MR'sto aseries of SGI .rgb’s and then to
the 3D .dset format. There were 18 corond dices provided. The FOV for this dataset
was 200x200 mm and the thickness of each dice was 3mm.

The optimal seed point was defined by corond dice 14, axid dice 183, and
sagittal dice 81. Figure 27 shows these three dices, from top to bottom before
segmentation. The tumor mass can be seen in the top left portion of corond dice 14.
Figure 28 shows these same three dices after the segmentation has been completed, with
the tumor identified in red.

The threshold value used for segmentation in the sTHair dataset was 55. The
volume estimates calculated were 29.81 et and 28.67 cnt™. Thefirst estimate being the
voxel count, including edge voxds, and the second estimate coming from the
vtkMassProperties object. The surface area computed was 153.81 cn.

Figure 29 is an image of the 3D view of the dataset before segmentation and
Figure 30 isthe same view after the tumor has been segmented. Figure 31 provides a
Sdeview of the 3D visudization and Figure 32 shows the image from the top of the
head. From ingpection of these images, one can see that this tumor appears larger than

either of the two previous tumors, which corresponds to the volume estimates we predict.

49

Figure27: Coronal dice 14, Axial dice 183, Figure 28. Coronal dice 14, Axial
Sagittal dice 81 before slice 183, Sagittal slice 81 after

segmentation — Flair 441.dset segmentation — Flair 441.dset

50

Figure 29: 3D construction before segmentation — s7Flair.dset

Figure 30: 3D construction with tumor segmented in blue— s7Flair.dset

51

Figure 31: Sideview 3D congtruction with segmented tumor — s7Flair.dset

Figure32: View from top of head of 3D construction — s7Flair.dset

52

Upon ingpection of the axid dice of the s7Flair dataset in Figure 28, we noticed
the algorithm had left awhole in the middle of the tumor. This areaiin the center of the
tumor has a much lower intengty vaue from the other portions of the tumor. When these
results were shown to Dr. Brockway, he informed us that thiswas actudly acyst in the
middle of the tumor and requested that we go one step further and segment the cyst from
the tumor.

The best seed point for the cyst was defined by corond dice 8, axia dice 188,
and sagittal dice 101. Thethreshold value used for this segmentation was 17. The
volume calculation for the cyst yidlded estimates of 0.71 cn?® and 0.54 cm®. Thefirst
esimate being the voxe count, including edge voxels, and the second estimate coming
from the vtkM assProperties object. The surface area computed was 7.52 cn?.

Figure 33 shows the cyst segmented in the three 2D dices described above and

Fgure 34 showsthe 3D visudization with the cyst ssgmented in blue.

Figure 33: Coronal dice 8, Axial Slice 188, Sagittal dice 101,
with cyst segmented in red — s7Flair.dset

53

Figure 34: 3D congtruction with segmented cyst in blue— s7Flair.dset

Figure 35 provides a table to summarize our results. Each of the three datasets
described above are listed with their estimated volume and surface area. The cyst from

the s7THair dataset is dlso included.

Figure 35: Table summarizing results

Dataset Volume (cm®) Volume (cm®) Surface
From Voxel Count | From vtkMassproperties | Area (cm?)
jl1Flair.dset 3.07 cnv 2.54 cnr 28.27 cnf
Flair441.dset 26.83 cnr’ 26.08 cnr’ 83.99 cnr
s7Flair.dset 29.81 cm’ 28.67 cm’ 153.81 cnt
Cyst from s7Flair.dset 0.71 cnr 0.54 cnr 7.52 cnt

3.7 Conclusions and Future Work

With the MRI gpplication being extended to segment tumors and cdculate
edimated volume of these tumors, there exist greet opportunity for extending this work
even further. Oneimmediate need redlized from case 3 described in the results section, is
to have the capability to perform more than one level of segmentation. It would prove
useful to be able to segment objects, such asa cyst, from the tumor volume that has been
segmented from the brain, and display both segmented objects a once. These objects
could be made digtinguishable by rendering each in adifferent color.

Further work should aso be performed in refining the segmentation agorithm and
perhaps replacing it with a more sophigticated method of segmentation. One possibility
would be to combine the current region growing approach with an edge detection
drategy. A combination of the two is often used in order to yield more acceptable

segmentation results[6]. Another possibility would be to experiment with the Implicit

55

Snakes approach described in [12], which could provide a means to progressively
determine the surface of the tumor. This could result in more accurate edge detection
method, which would in turn increase the accuracy of the volume compuitation.

As this application evolves and continues to be improved upon, thereis great
potentid for itsuse asatool for physcians. With accurate segmentation and
quantification of tumor volumes, physicians would be able to better prepare their strategy

before performing surgery, and could save a life where otherwise would not have been

possible

56

Chapter 4
Summary
M obile networking and medica image andysis are both exciting and interesting
research domains. Data visudization techniques have proved themselves invauable in
ading in analysisin both of these research areas. There are many interesting problems
waiting to be solved in each fidd, al of which data visudization would be a ussful tool.
Over the course of the past academic year, Mobvis and the MRI application have
both been extended to offer features found useful in the areas of research they support.
Through working with these gpplications, | had the opportunity to learn numerous
vauable |essons about software development and design in generd. In addition, working
with these gpplications provided the opportunity to further my knowledge in data

visudization techniques, and grow my interest in this area.

57

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

References

T.A. Dahlberg, K.R. Subramanian, ~ Visudization of Mobile Network
Smulaions', Smulation, The Society for Computer Smulation and
Modedling, Vol 77(3-4), pp. 128-140,Sept/Oct. 2001.

K.R. Subramanian, T. Dahlberg, " Congestion Control in Mobile
Networks', Proceedings of Information Visualization 2000 (INFOVIS
20000) Late Breaking Hot Topics, Oct 9-10, 2000, Sdt Lake City, UT,
|EEE Computer Society.

T.Dahlberg, K.R. Subramanian, " Visudization of Red-Time

Survivability Metrics for Mobile Networks', ACM SMM 2000, Third
ACM International Workshop on Modeling, Analysis and Smulation of
Wireless and Mobile Systems Boston, MA.., August 2000.

Shroeder, W., Martin, K. and Lorensen, B. The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics, Prentice Hall, Inc., Second
Edition, 1998.

Ed Huai-hsin, John Riedl, Phillip Barry, and Joseph Kongtan, “ Principles
for Information Visudization Spreadsheets’, IEEE Computer Graphics
and Applications, July/August 1998, pp. 30-38.

Gonzdez, Rafadl C., Woods, Richard E. Digital Image Processing,
Addison-Wedey Publishing Company, 1993.

Tim Mclnerney, Demetri Terzopoulos, “Deformable Modesin Medicd
Image Andyss’, Medical Image Analysis, 1996.

Lutz, Mark. Programming Python, 2" Edition, O’ Reilly, 2001.

Beazley, David M. Python Essential Reference, New Riders Publishing,
2000.

Heller, Dan, Ferguson, Paula M., Motif Programming Manual for
OS-/Motif Release 1.2, Volume Sx A, O'Rellly & Associates, 1994.

Fountain, Antony, Ferguson, Paula, Motif Reference Manual for Motif 2.1
Volume Sx B, O'Rellly & Associates, 2000.

T.S. Yoo, K.R. Subramanian, " Implicit Snakes: Active Constrained

Implicit Surfaces’, Medical Image Computing and Computer-Assisted
Intervention (MICCAI2001), October 14-17, 2001, Utrecht, Netherlands.

58

[13] William E. Lorensen, Harvey E. Cline, “Marching Cubes. A High
Resolution 3D Surface Congtruction Algorithm”, Computer Graphics,
Volume 21, Number 4, July 1987.

59

