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CHAPTER 1 -- INTRODUCTION 

An increasing amount of bioinformatics research is in gene relationships.  

A new technology, microarray data, has emerged that allows for the 

storage of tens of thousands of genes on a single chip.  This gives 

researchers the ability to look at entire genomes at once. Datasets this 

massive require a practical way to visualize them, an efficient, intuitive 

way to navigate and explore them, and a way to automate the grouping 

process.  This paper documents the work I have done for my senior 

project at the University of North Carolina at Charlotte building an 

application that visualizes large microarray dataset hierarchies as 

treemaps, allows efficient and intuitive navigation of those hierarchies, 

and visualizes gene combinations and their correlation values on a 

parallel coordinate graph based on the research in [6]. 

 

The microarray data hierarchy navigation tool I developed merges the 

treemap visualization with the actual navigational graphical user 

interface.  The treemap is a full-color and completely interactive 

visualization tool.  Through the use of color, labels, partitioning, and tool 

tip text, the treemap can visualize four separate attributes of the gene 

clusters that comprise it.  Currently, the treemap visualizes three 

attributes: correlation value (color), the number of individual genes that 

comprise each cluster (partitioning and label), and the gene’s name (tool 

tip text).  With an additional window, called the “sidebar”, navigating the 
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entire hierarchy at varying levels of detail is simple, intuitive, and fast.  

The sidebar shows all of the clusters at a certain level of detail and 

above, show exactly where in the enormous hierarchy a cluster is 

located, and its correlation value.  It also provides the interface for 

moving to different locations and levels of detail in the hierarchy.  

Together, these tools allows for the rapid absorption of the massive data 

visualized, which allows the user to more quickly separate areas of 

interest from the rest of the data.   

 

Many methods exist to show relationships between two genes (where 

genes are only placed in one group), but few methods exist to show 

relationships between multiple genes.  While finding two-way 

relationships between genes is beneficial, many genes influence multiple 

physiological pathways, and hence, would belong to more than one 

grouping.  Finding these elusive k-way relationships will help the science 

community better understand exactly how genes affect organisms.  A 

professor at UNC Charlotte, Dr. Xintao Wu, et al. have developed a 

method to automate gene grouping, and hence, separating interesting 

data from the rest, using a loglinear model.  The loglinear model 

measures correlation rather than causality, and it allows genes to belong 

to multiple groupings, which enables the discovery of elusive k-way gene 

relationships.  The other aspect of this project is to take the loglinear 

groupings (genes and discrete expression levels) and their correlation 
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values, and graph them in a variation of a parallel coordinate graph.  

This shall aid the user in finding those k-way relationships by visualizing 

the gene/expression level combinations and their correlation values.  

This should allow for the rapid identification of potential 

multidimensional relationships. 
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CHAPTER 2 -- BACKGROUND 

With the completion of the human DNA sequence as part of the Human 

Genome Project, [17,18], studies of gene-gene interactions will play an 

increasingly important role in the search for the causes of human 

diseases.  While individual genes may be responsible for making 

proteins, those proteins usually interact in different physiological 

processes and pathways.  Clues to the function of an unknown protein 

can be determined by investigating its interaction with other proteins 

whose functionality is known.     

 

2.1 – Microarray Data 

2.1.1 – What are Microarrays? 

A Science Magazine article entitled “Technologies in DNA Chips and 

Microarrays: II” [9] states that “DNA chips (often called biochips) and 

microarrays represent a broad class of technologies rather than a single 

technique.”  Another article from Science Magazine [7] describes 

microarrays as “ordered sets of DNA molecules.”  These ordered sets are 

of individual DNA features (usually genes), which are placed in precise 

locations on a substrate.  The features are extracted from a sample using 

either messenger RNA or oligonucleotide probes.  Using messenger RNA 

produces the complimentary DNA (cDNA) of a sample, so the extracted 

sequence of features must be complimented again in order to store the 

original sequence in the microarray.  Using oligonucleotides synthesizes 
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the sequence in one go.  Microarrays are a refinement of their immediate 

predecessor, macroarrays.  Microarrays differ from macroarrays only in 

storage density (the number of spots on the substrate).  On microarrays, 

this density is so great (spots are usually less than 200 microns in 

diameter) that thousands (currently up to 40,000) of features can be fit 

onto a single chip (usually glass, nylon, or silicon).  The spots appear as 

colored dots (figure 2.1), whose intensity and color represent information 

about a specific gene from the sample.  The principal benefit of this 

technology is the ability to study thousands of genes simultaneously, 

which allows us to rapidly find relationships between genes.        

 

There are multiple methods for encoding microarrays onto a chip, which 

is why it is said to represent a “broad class of technologies”.  Some low-

end systems use radioactivity or chemiluminescence to mark the chip, 

while most other systems use various methods of attaching fluorophores 

to the substrate.  Although each spot in a microarray represents an 

individual feature (usually a single gene) of a DNA strand, the manner of 

how that feature is encoded into a spot is entirely up to the designer of 

the microarray-creating machinery.  Some methods are more accurate 

than others, making it easier for the detection machinery to do its jobs.  

One such method is applying the fluorophores in three dimensions on 

the chip, instead of a flat layer [7]. 
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Figure 2.1– An Example of a DNA Microarray Slide 
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2.1.2 – Potentials of Microarray Data 

Microarray data is still in its infancy, but it is already being used in 

research in many fields, such as genology, toxicology, drug discovery, 

and disease diagnosis.  In fact, any area of research that concerns gene 

relations will benefit greatly from this technology.  For example, the most 

immediate beneficiary is the pharmaceutical industry [10].  They seek to 

learn why medicines work better for some people than they do for others.  

Discovering the gene relationships which dictate certain behaviors in the 

body will allow for the development of drugs to treat genetic problems.  

Doctors will be able to use microarray data to diagnose genetic diseases 

and shortcomings in patients by comparing their gene sequences against 

those in various genome databases.  The doctors could then prescribe 

the drugs the pharmaceutical industry will have developed.  

 

2.1.3 – Problems with Microarray Data 

One problem with microarray data is its sheer volume: the researcher is 

looking at tens of thousands of genes at once.  Many clustering 

algorithms have been developed for finding gene relations amid this mass 

of data, such as CAST [11], MST [12], HCS [13], and CLICK [14], which 

group genes with similar expressions into clusters.  These techniques 

force a gene into a single cluster, which does not take into account the 

fact a gene can affect multiple processes.  In addition, these clustering 

methods do not consider relationships between genes inside a cluster 
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and those across different clusters, causing these methods to lack the 

ability to find multidimensional relationships.  Such relationships show if 

and how genes contribute to multiple physiological pathways (such as 

the p53 protein [6]).  This problem brings forth the need of a tool that can 

assist a researcher in finding these elusive k-way relationships; one goal 

of this project is to use loglinear modeling to achieve this.  The other goal 

of this project is to develop an interactive graphical environment for 

navigating and exploring microarray data that has been grouped into 

hierarchical clusters in a binary fashion.  Grouping the clusters further 

into a binary-tree-hierarchy of clusters provides a framework for viewing 

the dataset at varying levels of detail [2]. 

 

2.2 – Loglinear Modeling   

The goal of [6] is to use loglinear modeling [15] to rapidly separate useful 

information (from the glut of microarray data) and find the 

multidimensional (k-way) relationships between genes.  Wu, et al. define 

loglinear modeling as “a methodology for approximating discrete 

multidimensional probability distributions”, and it is based on 

correlation measure instead of causality measure.  The 

multidimensionality aspect overcomes the main shortcoming of 

traditional clustering methods: a node (in this case, a gene) can not 

belong to more than one unrelated cluster in a cluster hierarchy [6].  Wu, 

et al. transform microarray data into a boolean matrix, apply the Apriori 
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method to find all of the large gene sets, and then iteratively build k-way 

relations between the genes.  One aspect of this project is to develop a 

tool to visualize the data generated in the method described in [6] using a 

parallel coordinate graph.  This graph will plot gene/expression-level 

combinations, as described in [6] on axes measuring interaction effect (a 

value measuring correlation between the gene/expression-level 

combinations).  This visualization will help a researcher quickly recognize 

those relationships uncovered using the method of Wu, et al.  The details 

of this aspect of the application are described in more detail later in the 

paper.  These expression levels are found through the following equation. 

 

 

The coefficients corresponding to any group-by G are obtained by 

subtracting the average   value at group-by G all the coefficients from 

higher-level group-by-s.  For example, in a four-dimensional table with 

dimensions A, B, C, and D, (i,j,k,l,y[ijkl]) is used to denote a cell in four-

dimensional cube-space, where I = 0…I-1, j = 0…J-1, k = 0…K-1, and l = 

0…L-1 [21].  All of the possible factor effects of k, of k-1, all the way 

down to those of 1, and the mean   is shown in the following: 
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2.3 – Information Visualization 

Information visualization is about presenting abstract data in visual form 

to make it more understandable.  It can be for the purpose of making 

data more understandable to others, making large, tedious data sets 

easier to study for a researcher, or making the data interactive.   

 

There are countless methods for visualizing data, from pie charts and bar 

graphs to treemaps and parallel coordinate graphs.  This project works 

with a binary tree hierarchy of clustered DNA microarray data, and gene 

combinations and their loglinear correlation values.  Many visualization 

techniques have been developed to visualize clusters and hierarchies, 

which traditionally are based on a node-link representation.  Although 

this is the most intuitive representation, it makes very inefficient use of 

display space; beyond a few-hundred nodes, the display becomes 

cluttered.  3D extensions to graph drawing algorithms have also been 

proposed, including cone trees and disc trees [19], where the children of 

each node are arranged on the base of a cone; in the case of disc trees, 

the lateral surface of the cone is dispensed with.  These techniques, to 

some extent, provide efficient space usage, but occlusion and difficulty 

seeing the entire graph or hierarchy becomes an issue.  To use space 

optimally, space-filling approaches can be used, especially for large 

hierarchies.  Treemaps [16] use rectangles to represent clusters; 
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hierarchies are represented by recursive subdivision based on some 

attribute common among the clusters, such as the number of children.    

 

In many domains, the incoming data has a large number of dimensions, 

and is said to be multi-variate; as most visualizations can accommodate 

at most 4 or 5 dimensions (3 spatial, time, and color).  Most of these 

techniques only show a subset of the dimensions.  Some techniques, 

such as parallel coordinates [20], are more scalable to higher 

dimensions.  The multi dimensional data is mapped onto 2D plots, 

plotting n-dimensional points as polyline segments through N axes, all of 

which are parallel to each other. 

 

 

2.3.1 – Treemaps 

Developed by Ben Schneiderman, and described in [16], treemaps 

provide an efficient, two-dimensional space-filling approach to visualizing 

hierarchical structures.  In treemaps, rectangles represent clusters in the 

hierarchy.  The root cluster in the hierarchy owns all of the available 

space.  This space is partitioned with vertical lines between that cluster’s 

children.  Each child is allotted space proportional to its size (“size” being 

the value of any attribute common to clusters, such as its number of 

children).  Each child’s space is subsequently partitioned in the same 

manner, but with a horizontal line.  This process recurs down the tree, at 
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odd levels the partitioning lines are vertical (as with the root (level 1)), 

and at even levels, the partitioning lines are horizontal (as with level 2, 

where the root’s children are partitioned).  The formula for the 

partitioning is “x[n] = x[1] + (Size(child[n]) / (Size(root)) * (x[2] – x[1])”, 

where x[n] is the x or y coordinate of the partition for the nth child of the 

root, x[1] is the minimal x or y coordinate of the root’s rectangle, and x[2] 

is the maximum x or y coordinate of the root’s rectangle.  For odd levels 

(such as root), use x coordinates.  For even levels, use y coordinates. 

Color coding of the rectangles provides both visual clarity and the 

opportunity to visualize an additional attribute of the clusters, but if the 

colors of adjacent rectangles are too similar, boundary lines must be 

used [16].  Figure 2.2 shows a colored treemap five levels down from the 

root.  In this project we use interactive, colored treemaps to allow 

navigation and exploration of the clustered hierarchy of DNA microarray 

data.            

 

2.3.2 – Parallel Coordinates 

Parallel Coordinates, developed by Alfred Inselberg, visualize multi-

variate/multidimensional data without losing information [3]. Parallel 

coordinate graphs allow plotting n dimensional points two-dimensionally 

on N parallel axes.  Each axis represents a single dimension, and a 

polyline connecting the axes represents a single n dimensional point.  

Plotting several n dimensional points on the same set of axes allows the  
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Figure 2.2 – A Colored Treemap 
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viewer to quickly recognize similarities and differences between the 

points, thus making parallel coordinates good for finding relations in 

multi-variate data, converting that problem into a 2-D pattern 

recognition problem [3].  Similar n-dimensional shapes will have a 

similar parallel graph, for example, two 8-dimensional spheres will have 

a similar graph, which will look different than an 8-dimensional 

pyramid’s graph.  In this project we use a modification of parallel 

coordinates to search for k-way relationships between genes.  The graph 

used in this project differs from Inselberg’s parallel coordinates in a few 

key ways.  This graph is, in fact, in two parts.  The first part is a graph as 

described above.  It contains m parallel axes, where m is the number of 

genes.  Each axis has n possible places a polyline can intersect, where n 

is the number of expression levels a gene can take.  Thus, the first part 

of the graph plots gene/expression level combinations.  The second part 

differs considerably from Inselberg’s.  In this part of this graph, each axis 

represents a combination of genes instead of a single dimension.  In this 

sense, single genes can be thought of as single dimensions.  Each gene 

can take n expression levels (such as low, normal, and high, for n = 3).  

Each combination of genes and their expression levels (such as Gene 

A[low] + Gene B[high] + Gene C[normal]) is graphed as a single point on 

the axis that represents that combination of genes (for example, 

combination “Gene A[low] + Gene B[high] + Gene C[normal]” would be a 

point on the axis that graphs “Gene A[all] + Gene B[all] + Gene C[all]”.  



 22 

Another difference is that since each point is plotted in a self-contained 

point on a single axis, there are no polylines connecting multiple points.  

When a point is selected, its combination is plotted on the first part of 

the graph (which is like Inselberg’s).       

 

2.4 – Why Microarray Visualization? 

In [6], microarray data is described as providing “a powerful basis for 

analysis of gene expression.”  Studies on gene-gene interactions will play 

an increasingly important role in the search for the causes of human 

disease, however, microarray data can bombard a researcher with tens of 

thousands of genes simultaneously.  An application that presents an 

intuitive, interactive, and graphical navigation tool for such microarrays 

can aid a researcher in rapidly finding areas of interest within the 

massive dataset.  The application developed as part of this project 

contains such a navigation tool using colored treemaps as part of a 

point-and-click interface.  The loglinear modeling aspect of the 

application is designed to aid the researcher in finding multidimensional 

relationships between genes undetectable with other methods.  
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CHAPTER 3 – EXPERIMENTATION AND RESULTS 

3.1 – Treemap Visualization 

The user interface has undergone grueling testing and has proven to be 

an intuitive, efficient, and effective way to navigate and explore even a 

large hierarchy (over 2000 clusters).  The visualization aspect of the 

interface successfully allows the user to rapidly determine the correlation 

values of the clusters displayed, find out information about those 

clusters (such as which genes comprise them and the cluster’s exact 

location in the hierarchy), and take a closer look at those clusters (by 

exploring the subhierarchies underneath those clusters).  This navigation 

tool works consistently well under different visualization demands, from 

very small subhierarchies (figure 3.1 shows the smallest of all 

subhierarchies), to very large subhierarchies (figure 3.2 shows 8 levels 

down from the root node).  This part of the visualization was tested using 

two different data files.  The first one, “test.gtr”, is very short (15 clusters 

and 16 genes), while the second one, “demo.gtr”, is very long (2466 

clusters and 2465 genes).  The small file was used to debug and perfect 

the algorithms (figure 3.3 shows a treemap visualization using the small 

data file), and the second file was used to test these algorithms with a 

more realistically-sized data set.  The second file provided the data for 

figures 2.2, 3.1, 3.2, and others of the treemap and sidebar, other than 

figure 3.3.  The application, after debugging and perfecting, works well, 

and is stable with the large data set as well as the small.   
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Figure 3.1 – An Example of the Smallest Subhierarchy: a Cluster at 
the End of the Overall Hierarchy 

Figure 3.2 – 8 Levels deep from the root.  This shows how 
cluttered the treemap can be. 
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Figure 3.3 – A Treemap Using the Smaller Data File 
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Dr. Subramanian has said that some data sets may get as large as 8000 

clusters and a similar number of genes, and the human genome is 

estimated to be between 30,000 and 45,000 genes.  Since this 

application works well with the large data set it was tested with, there is 

no doubt it will work just as well with an even larger data set (system 

memory permitting). 

 

3.2 –Parallel Coordinate Loglinear Graph 

The parallel coordinate graph is the newest feature of the application, 

having been started less than a month before this paper was written.  

For having such a short development cycle, it is surprisingly functional, 

effective and stable.  Currently, it can read loglinear data files comprised 

of 4 genes with 3 expression levels, 2 genes with 3 expression levels, and 

3 genes with 2 expression levels.  It has been tested with a data file for 

each of those combinations.  The smaller data files (with 2 and 3 genes) 

can not yield much useful data, but they were instrumental in the rapid 

testing and debugging phase.  The larger data file (with 4 genes) has 

more potential to uncover elusive k-way gene relationships.  One method 

of finding these relationships is to match similar gene/expression-level 

combinations with similar correlation values.  This process would be 

highly impractical and tiresome if done by manually reading a data file.  

This application allows the user to immediately identify combinations 

with similar correlation values, and, upon picking a combination (or 
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several nearby combinations), that/those combination’s 

gene/expression-level composition is graphed, allowing the user to 

instantly recognize trends. 

 

Using the larger data file (with 4 genes), a trend has been recognized 

among combinations that possess similar, high correlation values.  When 

genes A, B, C, and D are all at normal expression level, any combination 

of them, aside from combinations possessing both genes A and B 

together, comprise all of the highest correlation values in the dataset, 

with the combination “gene C[normal] + gene D[normal]” yielding the very 

highest correlation. Figures 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 show this 

trend.  Note that these figures have been modified: highlighting was 

added to the chosen plotted square to show exactly which combination 

was selected from the axis identified in the caption.  It is a safe 

assumption that more than just this one trend exists in the 4 gene, 3 

expression level data set.  When even larger data files are available, such 

as those with 5 or more genes, it is doubtless that this tool will assist in 

the rapid discovery of many k-way relationships.  
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Figures 3.4 (above) and 3.5 (below) show how these two Similar Gene 
/Expression-Level Combinations have Similar Correlation Values.  
They are also Similar to those in Figures 3.6, 3.7, 3.8, and 3.9. 
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Figures 3.6 (above) and 3.7 (below) show how these two Similar 
Gene/Expression-Level Combinations have Similar Correlation Values.  
They are also Similar to those in Figures 3.4, 3.5, 3.8, and 3.9. 
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Figures 3.8 (above) and 3.9 (below) show how these two Similar 
Gene/Expression-Level Combinations have Similar Correlation Values.  
They are also Similar to those in Figures 3.4, 3.5, 3.6, and 3.7. 
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CHAPTER 4 – IMPLEMENTATION 

4.1 – The Beginning 

In April, 2003 Dr. K.R. Subramanian created a visualization program 

that graphically showed the binary trees of the microarray data.  He 

programmed it in C++, using the Visualization Toolkit (VTK) libraries [5].  

He developed it on a SGI Octane II graphics workstation.  This initial 

implementation was intended only as a “Beta” version to be expanded 

upon, and hence, had many shortcomings.  It could only display a single 

level in the hierarchy, which was given by the user as a command-line 

argument.  Displaying a different level of the cluster hierarchy required 

exiting and restarting the application.  There was no labeling of what was 

being visualized.  The rectangles comprising the graphical representation 

of this level of the cluster hierarchy were almost unidentifiable to the 

user, because the 3D picking that was employed made it exceptionally 

difficult to select the rectangle the mouse pointer was directly over.  The 

program was hard-coded to read a particular data file, and there was 

also no support for the parallel coordinate graph of loglinear data files.  

The goal of this project was to expand and upgrade the work begun by 

Dr. Subramanian, and effectively reconcile the aforementioned 

shortcomings.  Most time was spent on the treemap visualization, and 

when that was completed in early December, 2003, work was begun on 

the parallel coordinate graph.  
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4.2 – Treemap Visualization 

The treemap visualization provides an interactive and intuitive tool for 

navigating the microarray cluster hierarchy.  It consists of three parts: 

the treemap, the sidebar, and the genebar (figures 2.2, 4.1, and 4.2).  

The treemap shows details about the cluster hierarchy at a particular 

level down from a chosen cluster, the sidebar shows what that level is 

and what other clusters are on that level and above (closer to the chosen 

cluster), and the genebar shows which genes make up a cluster and 

provides for future integration with Yong Ye’s program. 

 

4.2.1 – The Treemap 

This part of the visualization shows a treemap representation of part of 

the cluster hierarchy.  It shows the details of the hierarchy, in treemap 

form, a chosen number of levels down from a chosen cluster (default is 

root).  Figure 2.2 shows the treemap five levels down from the root 

cluster.  To achieve this, the cluster hierarchy is traversed under the 

chosen cluster without exceeding the depth level.  Each cluster visited is 

put on a growable array (vector).  Each time a cluster at the specified 

depth is visited (or if a visited cluster has an individual gene as a child) 

during the traversal, it is also put on the vector of clusters, but its ID is 

also added to an additional vector to mark that gene as being on the 

bottom level in the treemap.  When the traversal is completed, the 

program looks at the array of clusters and forms a new treemap from it.  
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In a treemap, a 

Figure 4.1 – The Sidebar 

Figure 4.2 –The Genebar  
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parent rectangle has 100% of the space that can be allotted to each of its 

children.  In this program, the parent rectangle’s space is partitioned to 

its two children based on the number of genes that comprise each child 

cluster (each rectangle represents a cluster in the hierarchy).  A child 

rectangle is allotted the percentage of its parent’s space equal to the 

percentage of the parent’s genes that come from that child.   

 

Interface widgets and windows were added to the application to give a 

foundation for a graphical user interface (gui).  The treemap is located in 

an interface-window widget, henceforth referred to as the “main window”.  

Originally, this window was a hybrid interface-window/VTK render 

window.  These hybrid windows allow the display of VTK 3D graphics 

inside a user interface.  This was needed at the time, because the 

treemap was programmed using VTK classes (vtkCubeSource, 

vtkPolyDataMapper, vtkActor, vtkRenderer, vtkFlRenderWindow, and 

vtkFlRenderWindowInteractor).  It consisted of various-sized 3D 

rectangular shapes (depicting the bottom-level cells in the treemap, 

which in turn represent clusters in the hierarchy) resting on a large 

yellow 3D rectangle, whose color shows through between the rectangles 

in the treemap, forming yellow boundaries between them.  The treemap 

was rewritten to use light-weight, two-dimensional button widgets, and a 

window widget, eliminating all VTK objects.  With the treemap now 

visualized with buttons on top of a yellow window, certain benefits were 
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reaped. The application was smaller, it ran much faster, the treemap 

could no longer be rotated in 3D space, and most importantly, the use of 

2D picking was available.  Accidentally rotating the treemap in the 3D 

space would ruin the straight-ahead view of the visualization, causing 

the yellow 3D background rectangle to no longer show through between 

the smaller 3D rectangle cells.  If neighboring cells were of similar 

enough color, distinguishing between them would be impossible, and 

ruin the usefulness of the treemap.  The user would then have to stop 

navigating the cluster hierarchy and attempt to undo the rotation (which 

can take time).  The 2D picking is built in to the button widgets and 

eliminates the difficulties with 3D picking.  The buttons use callbacks to 

handle events (like clicking on the button with a mouse).  The buttons 

also allow for labeling and tool tip text, which the VTK cubes did not.  

The labeling and tool tip text add two additional pieces of data per cell to 

be visualized!  Currently, the application uses the label to show how 

many genes comprise that cluster, and the tool tip text identifies the 

cluster without the need to click on it (figure 4.3). 

 

Another feature built into the treemap is highlighting.  When the user 

picks a rectangle by clicking on it, it turns the rectangle pink (figure 4.4).  

This useful feature aids the user by eliminating the need to remember 

the location of the rectangle that has been picked.  If the treemap is 

showing the hierarchy several levels deep from a cluster, it is quite  
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cluttered (figure 3.2), and the researcher would have to locate the 

rectangle of interest each time his or her eyes left the screen.  

Highlighting also takes place in the sidebar.  These features are 

connected and when a rectangle (or its cluster) is highlighted in one 

window, its corresponding cluster (or rectangle) is highlighted in the 

other window automatically (figure 4.4).  In addition to highlighting, 

when a rectangle is clicked (picked), it generates a genebar window for 

that cluster.  This feature will be detailed in section 3.2.3.  It also marks 

that cluster to be the currently picked cluster.  Other than marking and 

storing the currently selected cluster, the treemap can not initiate any 

changes in the visualization; that job belongs to the sidebar. 

 

Figure 4.3 – The Tool Tip Text 
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Figure 4.4 – Highlighting  
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4.2.2 – The Sidebar 

The sidebar, shown in figures 4.1 and 4.5, is a powerful addition to the 

treemap visualization.  It is a navigation tool that shows the 

subhierarchy that is displayed in the treemap in a different format.  Like 

the treemap, it represents clusters using button widgets.  Unlike the 

treemap, it represents every cluster in the subhierarchy with a button.  

The sidebar is supplied data from the hierarchy traversal described in 

section 3.2.1.  Before a new traversal takes place, the current sidebar is 

deleted, and a new, empty one is allocated to take its place.  During the 

traversal, each time a cluster in the hierarchy is visited, a call is made to 

the sidebar object, telling it to take on this cluster.  Unlike with the 

treemap, the sidebar will take on clusters with children that are 

individual genes, and even individual genes themselves: as long as they 

are within the traversal bounds set by the user.  Figures 4.1 and 4.5 

show the cluster that was selected to be the root of the subhierarchy as 

the top button of a vertical sequence of button widgets.  Each button is 

colored according to its cluster’s correlation value, just as in the 

treemap, and each button is labeled with the name of the cluster, and its 

depth from the selected root.  The button widgets are not added directly 

to a window in the sidebar.  The sidebar has a window widget that acts 

as a wrapper for everything on the sidebar, but these buttons are added 

to a special scrolling window, which is added to the outer window.  
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Scrolling window widget is just like a regular window widget, but it can 

map coordinates  
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Figure 4.5 – The Treemap and the Sidebar five levels deep from the root 
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outside of its dimensions.  When widgets are added to such locations in 

window, a scroll bar appears on the right, and/or on the bottom of the 

scroll window, allowing the user to scroll around a much larger window. 

 

For each level of depth a cluster is from the chosen root, its button 

widget is indented.  The clusters shown in the sidebar that are the 

furthest indented (and hence, are labeled with the deepest depth level) 

are those clusters shown on the bottom level of the treemap (those which 

have buttons assigned to them).  As mentioned in section 3.2.1, the 

treemap will not show a cluster if one or both of its children are 

individual nodes, instead showing such a cluster’s parent.  If the parent’s 

other child is a gene, it will show the parent’s parent, and so on.  The 

sidebar allows the user to recognize those cases, whereas with the 

treemap the distinction can not be made.  To allow the distinction to be 

made, the sidebar will also show the individual gene-children of a 

cluster.  Genes have no correlation value, and their buttons are all 

colored bright green to distinguish them from clusters.  Clicking on a 

button in the sidebar highlights it by coloring it pink, and set that cluster 

to be the currently picked cluster.  If the picked button corresponds to a 

cluster that is on the bottom level in the treemap, the program will 

automatically highlight the button widget in the treemap. 
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In addition to supplementing the information provided by the treemap, 

the sidebar also acts as the primary navigation tool of the application.  

Figures 4.1, 4.6, and 4.7 show the navigational area at the bottom of the 

sidebar.  This takes in user input and updates the treemap and the 

sidebar with a new view of the cluster hierarchy.  The buttons marked 

with arrows control navigational direction:  The down button navigates 

down-arrow the cluster hierarchy, the up-arrow button navigates up the 

hierarchy, the back-arrow button goes back to the previous navigation 

choice (if applicable), and the forward-arrow button undoes the back-

arrow button.  The value-input fields tell the program how many levels 

down from the selected cluster to show, and how many levels up from 

the selected cluster to begin counting the levels down (setting a new root 

cluster n levels up from the selected cluster).  The default values are both 

five.  If the down-arrow button is clicked, the program will ignore the 

“up” value and proceed to traverse m levels deep from the selected 

cluster.  If the up-arrow button is clicked, the program does not ignore 

the “up” value, and will go up n levels in the hierarchy, set that cluster to 

be the new selected cluster, and then proceed to traverse m levels deep 

from that cluster.  These buttons are attached to callbacks that execute 

code when an event on them occurs.  The input fields are not attached to 

any callbacks, since changing the values does not imply the user wishes 

to immediately proceed with an action.  The down-arrow button’s 

callback calls a method that gets the chosen cluster from the treemap  
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Figure 4.6 – The Sidebar’s Navigation Buttons 

Figure 4.7 – NODE2431 Selected.  Instructions are to go 
UP Two Levels from that Cluster, and View the Fifth 
Level DOWN from There 
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(an object of class Geometry), where that information is stored, and then 

initiates a new traversal to occur from the selected cluster, m levels deep.  

The up-arrow button does the same thing, but first tells the treemap that 

the new selected cluster is n levels up from the current one.  The back-

arrow (“undo”) button’s callback calls a method that tells the program to 

display the previously chosen visualization of the cluster hierarchy.  The 

forward-arrow (“redo”) button’s callback calls a method that tells the 

program to display the visualization from where the user clicked the 

back-arrow button.  These buttons undo and redo navigation choices, 

just like “undo” and “redo” undoes and redoes actions in a word 

processing program or a paint program.  The undo/redo data is stored in 

a vector which is initially empty. Each time a new navigation action is 

performed, the root node and the levels of depth is added to that vector.  

Clicking “undo” initiates a hierarchy traversal using the root node and 

levels of depth stored in vector cell preceding the one storing the 

information of the currently displayed visualization.  Clicking the “redo” 

button does the same thing, but it uses the information stored in the 

vector’s cell immediately succeeding the one that corresponds to the 

current visualization.  The user can “undo” all the way back to the first 

visualization, and “redo” all the way to the last visualization.  The “undo” 

button has no effect if the user is viewing the initial visualization (from 

the hierarchy’s root), and the “redo” button has no effect if there is no 

next visualization selection.  Also, if a user performs some “undo’s” and 
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the initiates a new visualization with the “up” or “down” buttons, the 

navigation history vector is erased from that point onward, and the new 

selection immediately succeeds the last “undo” state in the vector. 

 

4.2.3 – The Genebar 

Then the user clicks a button widget in the treemap, it brings up a 

window widget called the “genebar”.  The genebar contains a scroll 

window widget that displays all of the genes that comprise the cluster the 

selected button represents (figures 4.2 and 4.8).  Each gene is 

represented by a button widget and is colored bright green.  The button 

is also labeled with that gene’s name.  The buttons are assigned to a 

callback to handle events on them.  Currently this callback does not 

execute any code.  In the future, it will call a program written by PhD 

student Yong Ye that visualizes the same microarray data with the graph 

drawing technique described in section 2.1.3.  

 

4.3 – The Parallel Coordinate Graph 

The parallel coordinate graph is a special window widget that supports 

OpenGL graphics.  When activated via a heading on the main window’s 

toolbar, this object reads in a loglinear data file.  This information is 

stored in objects of a class called “LogLinear_Piece”.  Each piece 

represents a gene/expression-level combination, such as “Gene A[low] + 

Gene B[high] + Gene C[normal]”, and its loglinear correlation.  The  
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Figure 4.8 – The Genebar with the Other Windows  
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program generates a series of axes, one axis per gene combination, like 

“Gene A + Gene B + Gene C”.  Each axis stores the pieces that are 

functions of that gene combination in a vector.  For example, piece “Gene 

A[low] + Gene B[high] + Gene C[normal]” would be stored in and graphed 

on axis “Gene A + Gene B + Gene C”, as would all other expression-level 

combinations of those genes.  The length of each axis measures the 

loglinear correlation value (transformed into screen coordinate), and the 

pieces are plotted on those grounds.  There needn’t be three different 

expression levels, or three different genes.  These are defined in the data 

file, and realistically may be of any number.  Right now, however, the 

program only supports data files that have four genes and three 

expression levels. 

 

The OpenGL window has two coordinate systems, one for user-interface 

widgets, and the other for OpenGL.  In this program, the OpenGL 

coordinate system was set to match the inflexible widget coordinate 

system (which always matches screen coordinates).  This allows the use 

of user interface event handling to pick OpenGL graphics primitives in 

the window without having to do a coordinate transformation.  The 

picking is done by first considering the x coordinate of the mouse click.  

Each axis stores its own x screen coordinate, and program compares 

these to the mouse click’s x.  When axis nearly (or precisely) matching 

that value is found, the program searches that axis’ vector of 
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LogLinear_Pieces for one that nearly (or precisely) matches that y 

coordinate.  When the data file is read and the pieces are created, the 

loglinear correlation values are stored in those pieces.  These values are 

also transformed into the system used by the OpenGL window (screen 

coordinates), and the Loglinear pieces store this value as well.  This way, 

the transformation only occurs once per piece and never more.  This is 

the y coordinate the program searches for.  When a match is found, the 

piece is plotted on the far left of the window, where there is a separate set 

of empty axes (figures 3.4 through 3.9).  Each of these axes represents a 

single gene, and has n possible graph-points.  The graph points 

represent the discrete expression levels in the data set (a data set with 3 

expression levels will have 3 graph points per axis).  The LogLinear_Piece 

is plotted by its definition, for example the graph in figure 4.9 represents 

the combination “Gene A[low] + Gene D[normal]” in a four-gene (genes 

A...D), three expression-level (low, normal, high) dataset.  Each 

LogLinear_Piece stores its definition (its combination) in a vector.  Each 

vector is m cells long, where m is the number of genes in the data set.  In 

each cell of the vector an integer value is stored, which corresponds to an 

expression level.  This program uses the value “-1” in a cell to show that 

combination excludes a gene.  For example, “Gene A[low] + Gene 

D[normal]” is represented in the vector as [1, -1, -1, 2], and “Gene B[high] 

+ Gene C[low] + Gene D[low]” would be stored as [-1, 3, 1, 1].  If more 
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than one LogLinear_Piece nearly matches the screen point clicked, all of 

those pieces will be graphed, each with a different color.     

       

Figure 4.9– The Parallel Coordinates Graph with a Square Picked and Graphed 
(the Red Line representing Gene A [low] + Gene D [normal]).  The Data used here 
contains 4 Genes with 3 Expression Levels 
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CHAPTER 5 – RUNNING THE APPLICATION 

5.1 – Starting the Program 

The program is started by executing the file named “gm”.  On Linux, this 

can be done in two ways.  The first uses the console by going to the 

“linux” subdirectory of the “microarray” directory and typing “gm” and 

then return.  The other is through one of the many graphical file 

browsers available and double-clicking on the file “gm”.  On the SGI, 

executing the program is done through the console, going to the “sgi” 

subdirectory of the “microarray” directory, typing “gm”, and then return.  

The user will be shown a graphical file selection window and asked to 

choose a data file (figure 5.1).  This remainder of this paper will show the 

application using the data file called “demo.gtr”.  The program then loads 

the data file and shows the user the initial-state screen (figure 5.2).  The 

initial state screen shows a plain yellow background and is awaiting user 

input of which of the two rectangle partitioning methods to use for the 

treemap visualization.  Then the partitioning method is selected (figure 

5.3), a pop-up window appears to ask the user “how many levels from the 

root node should be displayed?”  The default is 5.  When the user is 

finished, the program will show the treemap and the sidebar, starting 

with the root node, at the depth level chosen by the user.  This paper 

shows this with the depth level of five (figure 4.5).  Figures 2.2 and 4.1 

show a closer look at the treemap and the Sidebar.  The Sidebar doesn’t 

just show the clusters at the selected level of the hierarchy.  It shows the  
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Figure 5.1 – The File Selection Window 

Figure 5.2 – The Initial State 
 

Figure 5.3 – Select Partitioning 
Method 
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subhierarchy with the root, or previously selected cluster at the top, and 

all the clusters between that and the selected depth level from the top.  

The clusters at the selected depth are indented the most, and are present 

in the treemap. Notice how the rectangles in the treemap are of different 

colors.  These colors represent the cluster’s (that the rectangle 

represents) correlation value.  A rectangle that is black, or near black, 

has a correlation value near zero.  This means that the individual genes 

that comprise that cluster have almost no correlation between them.  A 

rectangle that is blue has a positive correlation between its genes: the 

lighter and brighter the blue, the stronger the positive correlation.  Red 

rectangles are the same as blue ones, except that they show a negative 

correlation between genes:  the lighter and brighter the red, the stronger 

the negative correlation.  Each rectangle also has a number on it.  This 

number tells the user how many individual genes comprise that cluster.  

 

5.2 – Navigating the Hierarchy 

This application was designed to give the user flexibility in navigating the 

hierarchy.  The most basic way to navigate the hierarchy is to select a 

cluster on either the treemap or the Sidebar, input the number of levels 

down from that cluster to navigate, and then click the down-arrow 

button.  When a cluster is selected, either in the treemap, or in the 

Sidebar, that cluster is highlighted in pink in both windows (figure 4.4).  

This helps the user see which rectangle in the treemap belongs to which 
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TreeNode.  When selecting a TreeNode on the treemap, a new window, 

called the Genebar, appears (figures 4.2 and 4.8).  The Genebar shows all 

of the individual genes that make up the cluster (TreeNode) selected.  

Also, the rectangles in the treemap are assigned tool tip text, which 

means, when the mouse pointer is stationary over a rectangle in the 

treemap for two seconds, a small piece of text will appear next to the 

mouse pointer (figure 4.3).  The rectangles’ are programmed to display 

the name of the cluster they represent. 

 

If the user chooses to navigate down the hierarchy five levels from cluster 

NODE2401, both the treemap and the Sidebar update to represent this 

(figure 5.4).  If the user decides he or she didn’t want to view this after 

all, there is a “back” button in the Sidebar that will go to the previous 

visualization.  The “back” button is bright red and marked with a left-

double arrow (figures 4.6 and 5.4).  This button can undo every 

navigation choice the user made during this running of the application, 

all the way back to the first visualization of the root cluster.  If the user 

decides again that the “undone” choice was the correct one after all, 

there is a “forward” button in the Sidebar that will undo any number of 

uses of the “back” button.  This button is bright red and marked with a 

right-double arrow (figures 4.6 and 5.4).  If the user goes “back” and then 

chooses a new navigation selection, the user can no longer go “forward” 

from that point; that part of the history is erased.  As long as no new 
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navigation  
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Figure 5.4 – 5 Levels down from NODE2401 
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choices are made, the user can go “back” all the way to the beginning, 

and then “forward” all the way to before he or she began going “back”. 

 

It is also possible to navigate upwards in the hierarchy.  If, from the root 

cluster, the user wants to show the hierarchy five levels down from the 

cluster two levels up from cluster NODE2431, the user must simply click 

on that button on the Sidebar (or on the treemap), click on the value 

input box next to the blue button marked with an up-arrow, erase its 

contents and replace them with “2”, click on the input box next to the 

blue button marked with a down-arrow, erase its contents and replace 

them with “5” (or leave it alone if it already says “5”), and then click the 

up-arrow button (figures 4.7 and 5.5).  

 

The user can navigate up and down the hierarchy from the beginning to 

the end, choosing any number of levels below the selected cluster to be 

shown.  Figure 3.1 shows an example of a cluster at the end of the 

hierarchy.  Notice that both of its children are individual genes; the 

hierarchy can not be navigated any farther down from this point.  

 

5.3 – Rectangle Partitioning Methods 

In section 5.1, when describing how to start the application, the user 

clicked “file/Load Hierarchy: New”.  There was also a choice for “Load 

Hierarchy: Old” (figure 5.3).  “New” and “Old” are perhaps poor names to  
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Figure 5.5 – Instructions from Figure 4.7 AFTER the Up Arrow is Clicked 
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describe what each choice means, but each one determines a different 

way of partitioning the rectangles in the treemap.  The “New” way 

partitions the rectangle based on the number of individual genes 

comprise the cluster the rectangle represents.  The “Old” way partitions 

the rectangle based on the cluster’s correlation value (as is the 

rectangle’s color).  These different partitioning methods yield totally 

different looking treemap visualizations (the number of rectangles and 

their locations relative to each other are the same, but the sizes are all 

different).   Figure 5.6 shows the root cluster, five levels deep with the 

“old” partitioning method.  Compare this with figure 2.2, showing the 

same thing, but with the “new” partitioning method.  All features 

described in earlier sections of this chapter apply equally, regardless of 

the partitioning method chosen. 

 

5.4 – Parallel Coordinate Graph 

On the menubar of the main window (the one that houses the treemap 

visualization) there is a button labeled “Parallel”.  Clicking the “Parallel” 

button opens a new window that graphs gene/expression-level 

combinations against the combinations’ effect correlation in parallel 

coordinates (figures 3.4…3.9, 4.9).  The y-axis of the graph measures the 

effect correlation value of a combination, as described in [6].  Each axis 

represents a combination of genes, and the squares plotted on an axis 

represent the discrete value permutations of that gene combination.   
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Figure 5.6– The Same Visualization Criteria as in Figure 2, but with an Alternate 
Partitioning Method 
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Each gene in a cluster can take one of n discrete expression levels, such 

as low, normal, and high.  Each square plotted on an axis represents a 

combination of genes and expression levels (such as gene A [high] + gene 

B [low] + gene C[normal]).    If a square is picked, a parallel coordinate 

graph (on the far left of the window) appears, showing that square’s gene 

and discrete value combination (figures 3.4…4.9, 4.9 – the red line).  If 

there are multiple squares near the one that was picked, each of those 

squares will be graphed simultaneously (each with a different color).  

This feature uses a different data file from the other visualizations, 

because the goal of this one is different:  this one is designed to allow the 

user to rapidly search for correlations between combinations of 

genes/expression-levels, and those combinations’ effect correlation 

values.  A parallel coordinate graph was chosen for this because, as 

Alfred Inselberg says in [3], “the special strength of parallel coordinates is 

in modeling relations.” 
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 CHAPTER 6 – FUTURE WORK 

This project is rife with opportunity for expansion and further 

improvement.  Most of this opportunity lies in integration with Yong Ye’s 

application and improvements to the parallel coordinate graph.   

 

6.1 – Integration with Yong Ye’s Application 

This application was built with integration in mind from the start.  The 

Genebar was built specifically for integration purposes: it shows all of the 

genes that comprise a cluster.  Yong Ye’s application visualizes genes 

and their relations to other genes in a cluster using a node-link graphing 

method.  The callbacks governing events concerning the GeneButtons in 

the Genebar are designed to make calls to Yong Ye’s program to visualize 

the selected gene.  There are most likely other areas where integration is 

not only possible, but desired. 

 

6.2 – Improvements to the Parallel Coordinate Graph 

Labeling the special axes a different color from the other axes would be a 

nice improvement, albeit low priority.  Replacing the huge C++ switch 

blocks with an algorithmic manner of defining each LogLinear_Piece 

would be a tremendous upgrade to the application.  As is, the application 

can read loglinear data files that are arranged in a certain order, but a 

nice improvement would be to modify the file parsing so it no longer 

demands the loglinear file to be in any order. 
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6.3 – Other Improvements 

It is certain that other improvements not mentioned above will be 

conceived of.  Perhaps an even more meaningful rectangle partitioning 

method will be desired.  One nice improvement would be to revamp the 

scrolling window class used by the sidebar.  The current scrolling 

window class seems to only be able to map roughly thirteen thousand 

additional pixels along the y axis before it “breaks”, and the Sidebar’s 

usefulness as a visualization tool is lost, but it still retains usefulness for 

controlling navigation.  When this occurs, all cluster picking must take 

place on the treemap itself, as picking on the sidebar is impossible. 
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APPENDIX B -- SOFTWARE ARCHITECTURE 

B.1 – Programming Language and Environment 

The current implementation of GM was programmed in C++ using the 

FLTK 1.1 libraries for X11.  Figure B.1 shows the class interactions of 

the program.  It was developed simultaneously on a SGI Octane II 

graphics workstation running IRIX 6.5.20, and on a PC-Compatible 

running Red Hat Linux 9.0.  It was compiled under CC99 (CC version 99) 

on the Octane II, and under GNU g++ 3.2.2 on the PC-Compatible.  On 

both platforms, all code was written in a text-editor (Nedit on the Octane 

II and Kate on the PC-Compatible) and command-line compiled.  All user 

interface code was developed using the FLTK 1.1 libraries for C++. “FLTK 

(pronounced "fulltick") is a cross-platform C++ GUI toolkit for 

UNIX®/Linux® (X11), Microsoft® Windows®, and MacOS® X. FLTK 

provides modern GUI functionality without the bloat and supports 3D 

graphics via OpenGL® and its built-in GLUT emulation (1).”  FLTK was 

chosen because of its straight-forward simplicity, small size, and its 

availability on multiple platforms.  With FLTK it is possible to rapidly 

hand-code effective graphical user interfaces. 

 

B.2 -- Application Layout 

The application GM is divided into many different classes.  Large classes 

are defined in a header file (“.h”) and an implementation file (“.cc”), which 

bear the name of the class.  Small classes are defined and implemented 
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in files bearing the name of the larger class that makes use of them.  The 

classes are divided into two groups: data classes and user interface 

classes.  Data classes together form the data layer, and the graphical 

visualization classes with the interface classes form the graphics and 

user interface layer.  Figure B.1 shows the class interaction. 

 

B.3 – The Data Layer 

The data layer exists behind the scenes, invisibly computing the data 

that makes the application work.  These classes make up the middleware 

of the application, and were programmed and debugged before the 

classes that graphically represent their data were even started. 

 

B.3.1 – Goals of the Data Layer 

These classes had to be completely independent of the graphical user 

interface (GUI).  They are required to efficiently perform any combination 

of:  processing data, storing it, and make it available upon request.  

These classes in this layer are responsible for parsing the data file, 

converting its contents into node objects, preserving the hierarchical 

structure of the data file in those node objects, traversing the vector of 

node objects to yield all nodes at a particular level, determining treemap 

information for each node at that level, storing navigation data for 

undoing and redoing navigation choices, storing axis information for the 

parallel graph, storing loglinear data for a combination of genes, and  
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Figure B.1 – The Class Relationships in the Application 
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storing window coordinates for that data. 

 

B.3.2 – Designing the Data Classes 

These classes are designed specifically for the GUI class(es) that will use 

them.  When a new visualization is added to the application, these 

classes are designed first, providing a solid, debugged foundation on 

which the graphics can be placed.  

 

B.3.3 – Description of the Data Classes 

B.3.3.1 – Rectangle 

An object of class Rectangle simply stores five single-precision floating 

point values for a cluster of genes.  Four of these values mark a 

rectangle’s normalized Cartesian coordinates, and are stored in a four-

celled array. The other stores a normalized correlation value.  The data 

stored in objects of this class are used by the application for the correct 

placement of the rectangles in the visualization, and to determine the 

correct color representation of the rectangle.  These represent a cluster’s 

position in the hierarchy, and show “how similar” or “how dissimilar” the 

individual genes comprising a cluster are to each other.  This class has 

two constructors.  The first takes no parameters and creates a rectangle 

without setting any values.  The second takes four parameters and 

creates a rectangle with its normalized Cartesian coordinates assigned.  

The correlation value must always be manually assigned.  Mutator 
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methods allow other objects to set an object’s data, and, in this 

application, begin with “Set” or “set”.  Class Rectangle contains mutators 

to individually set any of the five values it stores.    Accessor methods 

allow access to an object’s data as the return-value of a function.  In this 

application they begin with “Get” or “get”.  Class Rectangle contains six 

accessor methods:  five to individually access the five values stored, and 

one that accesses the four normalized Cartesian coordinates by returning 

a pointer to the four-celled array. 

 

B.3.3.2 – TreeNode 

Class TreeNode is the elementary storage-structure of the application.  

Each object is a node in a binary tree.  It represents a single gene, or a 

cluster of genes, in the microarray gene hierarchy.  Class TreeNode has 

only the default constructor (no parameters).  In addition to pointers to 

left and right children TreeNodes, this class contains a pointer to the 

parent TreeNode.  This back-pointer allows for navigating up the 

hierarchy, instead of only navigating down the hierarchy.  Class 

TreeNode also contains a pointer to a Rectangle, a void pointer to a class 

that graphically represents a TreeNode, and several primitive types 

storing the type (gene or cluster), correlation value, a partitioning value 

(determines where to splitting its rectangle space into two rectangles: one 

for the left-child, one for the right-child), and a dimension value 

(determines whether the splitting of the rectangle is vertical or 
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horizontal).  Class TreeNode has its own “<” operator to allow for sorting 

of the objects in a STL linked list.  This class has a full selection of 

accessor and mutator methods. 

 

B.3.3.3 – NodeData 

Objects of class NodeData are for temporary storage and conversion of 

data from the hierarchy data file.  The hierarchical data file is ASCII text 

with each line representing a grouping (cluster) of genes.  The lines are 

comprised of 3 character strings and a floating point number that 

represents the correlation value of that cluster.  The character strings are 

the names of the cluster being described, followed by its left-child and 

then right-child (which may be clusters or individual genes).  The 

children character strings are sent to instances of NodeData to extract 

the numeric IDs which are embedded in the cluster/gene names, and to 

store this information to correctly set the parent and child pointers in the 

TreeNode objects. 

 

B.3.3.4 – Hierarchy 

Class Hierarchy is responsible for reading the hierarchical data file, 

creating the TreeNode objects to represent the data in that file, storing 

those TreeNodes that represent clusters of genes (as opposed to 

individual genes) on a STL vector, and finally, traversing the hierarchy.  

It has no member data of its own that is of any consequence, preferring 
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to work with and modify data passed to it through its constructor.  The 

constructor takes two parameters: a pointer-to-character storing the 

name of the data file to be used, and a pointer-to-vector-of-*TreeNodes.  

The Read() method parses the hierarchical data file, creates a new 

TreeNode for every parent cluster it reads in, and creates objects of 

NodeData and places them on one of four vectors for later setting the 

parent and child pointers to establish the tree hierarchy in the TreeNode 

objects.  After the data file is completely read in, the NodeData vectors 

are traversed, and the parent/child relationships are set.  Individual 

genes are only referenced as the children of clusters in the data file, and 

no TreeNode object is allocated for them during the file parsing.  This is 

done while the vectors are traversed and relationships defined.  

Individual genes are important for determining the make-up of a cluster, 

and this information should not be discarded.  On the other hand, the 

treemap visualization only shows clusters, and it would not be prudent 

to store the individual genes on the same vector.  This is the reason the 

TreeNodes representing leafs (individual genes) are created during the 

relationship assessment process.  This way they are still attached to their 

parent clusters via parent and child pointers, but are not present on the 

TreeNode vector.  The hierarchy traversal methods are recursive 

algorithms for starting at a given root TreeNode, and returning all 

TreeNodes that occupy a specified level of the hierarchy and represent 

clusters of genes.  One method, called “GetTreeMap_R_Old” traverses the 
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hierarchy and sets each rectangle’s partitioning value based on that 

cluster’s correlation value.  The other traversal method, called 

“GetTreeMap_R_New”, sets each rectangle’s partitioning value based on 

the number of individual genes that comprise that cluster.  The user can 

select which traversal method to use within the program’s menus.  The 

traversal methods also call the Sidebar’s “addLine” method at every 

recursion, supplying the Sidebar with the subset of the overall hierarchy 

the user is currently interested in. 

 

B.3.3.5 – HistoryNode  

This class simply stores two integers:  the ID number of the current root 

cluster (the cluster at the top of the hierarchy of what is currently being 

visualized on-screen in the treemap), and the level in the hierarchy 

(relative to the root node) to show in the visualization.  There is only the 

default constructor, and both members are public. 

 

B.3.3.6 – History  

Class History stores the user’s navigation choices on a STL vector.  This 

data allows the user to undo previous navigation choices and then either 

redo the choices, or make new choices.  It manages the vector 

automatically, erasing HistoryNodes when applicable, creating them 

when applicable.  There is only the default constructor, and public 

methods include those used to add a navigation choice on to the vector, 
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or return the previous or next choices. 

 

B.3.3.7 – LogLinear_Piece 

This class is a hybrid between a data class and a graphical user interface 

class.  An object of this class represents a unique combination of genes 

and its loglinear correlation value.  The loglinear value is stored in two 

forms: one being the actual floating-point value, the other scaled to the 

y-axis of the window where this information will be displayed.  It also 

contains a vector of integers that represents the combination of genes.  It 

uses the default constructor. 

 

B.3.3.8 – Axis 

This class represents a group of combinations of genes as an axis in 

parallel coordinates.  Since each gene in a combination can take one of n 

discrete values, there is more than one combination of the same genes.  

An Axis represents all the combinations of the same grouping of genes, 

and stores the LogLinear_Pieces that represent each combination.  For 

example, if two genes, gene A and gene B, are grouped, and each can 

take three discrete values, an Axis would represent combination gene A + 

gene B, and it would store the nine LogLinear_Pieces that comprise that 

combination: gene A [1] gene B[1], gene A[1] gene B[2], gene A[1] gene 

B[3], gene A[2] gene B[1], all the way through gene A[3] gene B[3].  The 

combination is stored on a STL vector of LogLinear_Pieces.  Other data 
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stored is the Axis’ x-coordinate position in window coordinates, and a 

character string for the Axis’ name.  There is only the default 

constructor, and since all members are public, there are no accessors or 

mutators. 

 

B.3.3.9 – Pair 

Objects of class Pair simply store two double-precision floating point 

values.  These values represent an (x,y) coordinate in window 

coordinates.  This class has only the default constructor, and since both 

members are public, has no accessor or mutators.  

 

B.4 – The Graphics and User Interface Layer 

The graphical user interface layer exists on top of the data layer.  The 

classes that comprise this layer together make the front-end of the 

application.  They have FLTK widgets or openGL code, and either react to 

user input or simply graphically represent data.  Each class is 

programmed and debugged only after the data classes it uses are 

completely debugged. 

 

B.4.1 – Goals of the Graphics and User Interface Layer 

The classes that comprise the graphics and user interface layer must 

take data from classes in the data layer and blend it with a graphical 

user interface, creating a user-friendly, intuitive, and interactive 
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visualization of the data.  The classes that comprise this layer are 

responsible for creating the different FLTK windows in the program, such 

as the main window (contains the treemap visualization), the sidebar 

window, the graphbar window, and the parallel coordinate FLTK-openGL 

hybrid window.  They are also responsible for handling mouse and text 

input via a framework of callbacks.  

   

 B.4.2 – Designing the Graphics and User Interface Classes 

These classes must be built on top of, and are completely dependent on 

the data classes.  This ensures that the data classes are not dependent 

on the graphics classes, which is of paramount importance:  if the style 

of graphical representation of the data in the data layer changes, the 

classes in the data layer should not need changing. 

 

B.4.3 – Description of the Graphics and User Interface Classes 

B.4.3.1 – GUI 

The class GUI is the main user interface class and the main control 

class.  The allocation of an object of this class starts the application.  It 

contains the main window, on which the treemap visualization is placed.  

This class has, as members, many large and important objects, such as 

the vector of TreeNodes, the treemap visualization, the parallel 

coordinate visualization, the navigation history, and the file selection 

window.  The constructor takes, as parameters, the command line 
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arguments given with the executable.  As of this version of the 

application, there are no supported command line arguments; the name 

of the hierarchical data file is now selected from a graphical window, 

instead of being supplied as an argument.  The constructor first creates 

the file selection window, and then creates a new Hierarchy object, which 

automatically parses the data file and populates the TreeNode vector.  

The constructor then creates the main FLTK window and the Geometry 

object, which, when told, will display the treemap visualization.  The 

Geometry object is then bound to the main window, which then waits for 

user interaction. 

 

B.4.3.2 – TreeNodeActor 

Class TreeNodeActor inherits from class Fl_Button (FLTK Button).  It 

contains a pointer to an object of class TreeNode, and acts as a graphical 

representation of that TreeNode object.  TreeNodeActor was originally a 

subclass of vtkActor, which represents an object in a 3D scene, and 

“combines object properties (color, shading type, etc.), geometric 

definition, and orientation in the world coordinate system (5).”  

TreeNodeActor gets part of its name from its former parent class.  When 

it was updated to subclass an FLTK button, the old name was kept, 

because it still adequately describes the relation between an object of 

this class and the TreeNode it represents.  Its constructor takes only 

those parameters it passes to its parent class: integers for the x and y 
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coordinates of the upper-left corner of the button, integers for the 

button’s width and height, and a character string for the title.  Its only 

member data is the pointer to a TreeNode object.  It does, however, 

include the same accessor and mutator methods that class TreeNode 

possesses.  These accessor and mutators only call their counterparts in 

class TreeNode, and only exist as convenience functions.   

 

B.4.3.3 – Geometry  

Class Geometry is responsible for the main treemap visualization.  It 

stores a vector of TreeNodeActor objects, assigns them each a TreeNode, 

and also assigns the actor to the TreeNode (so they can both point to 

each other).  It contains its own Fl_Window (FLTK Window), on which it 

places the actors.  Its constructor takes the following parameters: a void 

pointer to the main window in class GUI, integers marking the x,y 

position and width and height of where the Geometry window will be 

placed, a pointer to the Hierarchy object, and a pointer to the TreeNode 

vector.  It uses the pointer to the main GUI window in order to add or 

remove its own window to or from the GUI window.  This pointer is 

casted to void so file “gmaGeometry.h” need not import (#include) file 

“gmaGui.h”, which would create an infinite dependency loop during 

linking, because “gmaGui.h” imports “gmaGeometry.h”.  The file 

“gmaGui.h” is instead imported by “gmaGeometry.cc”, where the void 

pointer is cast back to type GUI.  This class is responsible for the 
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creation of the sidebar and the genebar windows.  Class Geometry 

contains few accessor or mutator methods, only setting and getting the 

currently-picked-TreeNode. The sidebar and genebar pointers are public 

members.  It contains a powerful method, called 

“BuildHierarchyGeometry”, which is called when the treemap is to be 

updated.  This method momentarily “hides” (makes invisible) the 

Geometry window, deletes the current Sidebar object (if allocated), 

creates a new Sidebar object, calls the Hierarchy’s “GetTreeMap” method 

(with the currently-picked-TreeNode as the root), and uses the new 

treemap to set the TreeNodes’ rectangles’ dimensions.  It then “shows” 

(makes visible) the Geometry window, which now contains the updated 

treemap visualization.  This class also contains a static callback function 

for the TreeNodeActors (Fl_Buttons), which is called when one of these 

buttons is clicked.  This callback calls a method, which in turn, creates a 

new instance of class Genebar, showing all the genes that comprise the 

cluster the TreeNodeActor represents.   

 

B.4.3.4 – Link 

Class Link also inherits from Fl_Button.  It stores only two integers and a 

STL string, representing a TreeNode’s ID, that TreeNode’s parent’s ID, 

and the TreeNode’s name, respectively.  It has two constructors, the 

default constructor, and one that takes the aforementioned Fl_Button 

geometric parameters, and the ID’s and name.  It has no accessors or 
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mutators: all data is public. 

 

B.4.3.5 – Sidebar 

This class is almost solely responsible for taking navigational user-input, 

and setting in motion the update of the treemap visualization.  It has 

only the default constructor, which creates an Fl_Window, an Fl_Scroll (a 

window that has scrollbars on the side, allowing more objects to be 

placed in that window than will in the window’s bounds), Fl_Buttons to 

handle navigation up and down the hierarchy, as well as forward and 

backward in the navigation history, and it also creates two value-input 

boxes, so the user can dictate how many levels up the hierarchy to 

navigate, and how many levels down from the selected TreeNode to show 

in the treemap visualization.  The Sidebar contains a STL map of Link 

objects, which maps each Link object to an ID value.  Sidebar objects are 

created by the Geometry object, which also calls the Hierarchy to 

traverse the TreeNodes.  While traversing, the Hierarchy sends TreeNode 

pointers to the Sidebar via the “addLine” method, which creates a new 

Link for each TreeNode, labels it according to the name of the TreeNode it 

represents, colors it accordingly, and adds it to the Sidebar’s Fl_Scroll 

window.  When the Hierarchy stops sending new TreeNodes, the Sidebar 

adds the Fl_Scroll window to its main window, and makes its main 

window visible.  It then takes user input via the navigation buttons, 

input fields, and the many Links (Fl_Buttons) it contains.  The Sidebar 
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will also show the individual genes (in green) that exist at that level of the 

hierarchy, unlike the treemap visualization, which will instead show the 

cluster in the level immediately above. 

 

B.4.3.6 – GeneButton  

The GeneButton class is yet another subclass of Fl_Button.  It contains 

only a single integer representing an individual gene’s ID, and a STL 

string containing that gene’s name.  Its constructor takes the standard 

Fl_Button parameters, plus a character string for the name, and an 

integer for the ID.  There are no accessors or mutators, as both the name 

and ID are public. 

 

B.4.3.7 – Genebar 

Objects of class Genebar show all of the individual genes that comprise a 

cluster.  It contains an Fl_Window, an Fl_Scroll, and a STL linked-list of 

TreeNode objects.  A Genebar object is created when a TreeNodeActor 

(Fl_Button) in the treemap visualization is clicked.  The Genebar is given 

a pointer to the TreeNode that actor represents.  From there, the Genebar 

uses its own recursive Hierarchy traversal method, “findGenes_R”, to 

return only the individual genes (TreeNode objects) that exist in that 

subhierarchy with the selected TreeNode as the root.  Each gene 

(TreeNode) returned by the traversal method is placed in a vector.  When 

the traversal is finished, the vector of genes is sorted in incrementing 
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order on its ID number.  Then the vector is traversed, and for each gene 

(TreeNode) in the vector, a GeneButton is created, labeled according to 

the gene’s name, colored green (to mark it as an individual gene, as 

opposed to a cluster), given a size (constant), a position inside the 

Fl_Scroll, and is finally added to the Fl_Scroll.  This class contains a 

static callback for the GeneButton objects.  The callback calls a method 

that determines the ID of the selected GeneButton.  This method will be 

the bridge to Yong Ye’s application that shows information about 

individual genes.  

 

B.4.3.8 – Parallel 

Class Parallel is a subclass of a hybrid FLTK/OpenGL window 

(Fl_Gl_Window).  These hybrid classes allow both FLTK widgets and 

OpenGL graphics to be displayed in the same window.  Objects of class 

Parallel display a parallel coordinate graph of a Loglinear data file. “The 

special strength of parallel coordinates is in modeling relations. (3)”  “The 

display of multivariate datasets in parallel coordinates transforms the 

search for relations among the variables into a 2-D pattern recognition 

problem. (3)”   Class Parallel contains a STL vector of Axis objects, which 

contain a STL vector of LogLinear_Piece objects.  This class uses OpenGL 

to draw lines representing the axes and plots squares representing gene 

combinations (LogLinear_Piece) on those axes.  The y dimension of the 

axes represents the loglinear values.  It also has a number of axes that 
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show exactly which combination of genes and each gene’s discrete value 

a square represents.  The square that is graphed on these special axes is 

chosen via picking.  The OpenGL canvas dimensions are set to match the 

window dimensions (in screen coordinates) of the Fl_Gl_Window, allowing 

the use of FLTK mouse event handling on OpenGL primitives.  Its 

constructor takes only the standard FLTK widget parameters, four 

integers (x, y, width, and height), and a character string representing the 

name. 

 

B.4.3.9 – Pwin 

Class Pwin contains an Fl_Window and an object of class Parallel.  

When the user clicks the “Parallel” button in the menu bar of the main 

window in class GUI, the callback handling that event creates a new 

instance of this class.  The constructor of this class takes four integers 

and a void pointer as parameters: the window’s x and y position, the 

window’s width and height, and a pointer back to the object that 

created the new Pwin.  Pwin creates a new Fl_Window and a menubar 

for that window.  It then creates a new instance of Parallel and places 

it within its Fl_Window.    Future work with this application will 

undoubtedly add more functionality to this menubar.   
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