

A Visualization Tool For SYN Flooding Attack Detection

Joshua Foster
Supervisors: Drs. K.R. Subramanian and Gail J. Ahn

May 2002

Department of Computer Science
The University of North Carolina at Charlotte

Charlotte, NC 28223-0001

A Visualization Tool For SYN Flooding Attack Detection

Joshua Foster
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, NC 28223-0001

Abstract - Computer system attacks and misuses are of great concern in today�s highly
network-based society. Of all the types of intrusions, denial-of-service (DoS) attacks are
perhaps the most widely known. The goal of completely secure systems will never be
realized; therefore intrusion detection will continue to be necessary. Manual methods of
intrusion detection are no longer feasible with the large-scale, high-traffic networks of
today. Graphical representation of network data presents more information to the user in
a shorter amount of time and enables recognition of patterns not evident in textual data.
Of all the types of intrusions, denial-of-service (DoS) attacks are perhaps most widely
known. The SYN flooding DoS attack is the most popular and easiest to implement of these
attacks. In this paper, we discuss and demonstrate a tool for visualization of network data
specifically geared toward SYN flooding attack detection.

1 INTRODUCTION

 Intrusion detection has become a major concern in this age of large-scale, high-volume
networks. Most researchers agree that no system that is connected to a network can ever be
completely secure. Computer systems are not capable of detecting and preventing all possible
types of misuses and attacks, so the burden falls on the system administrator to review and
analyze network usage data to detect possible intrusions [4]. In the past, manual analysis of
network traffic and audit logs was used to identify the causes of security incidents. However,
networks have grown in size and volume to the point where this type of textual analysis is no
longer sufficient. Data visualization, or graphical representation of large amounts of
information, seems well-suited to the task of representing network infrastructure and traffic flow,
from the domain level down to individual packets of information sent between devices.

 Many forms of intrusion exist. Among these, denial-of-service (DoS) attacks have recently
been in the spotlight, as they have been successfully executed against a number of popular web
services in the past few years [4]. SYN flooding is a highly popular type of DoS attack, owing to
its relatively easily implementation and difficulty in tracing.

 In this paper, we will discuss a tool for the representation of network data in graphical form.
Specifically, we consider the attributes of the data from which we can construct patterns that
have a high possibility of making SYN flooding attacks easily visible. We will begin with a
description of the SYN flooding attack, discuss methods for detection of DoS attacks and show
examples of previous work involving visualization of network data. We will then discuss in

detail the implementation and use of the visualization tool, and conclude with the results of our
testing and experimentation with the program.

2 SYN FLOODING

 The SYN flooding attack is an easy-to-execute type of DoS attack that has become highly
popular. If executed successfully, the attack will render a target system unable to accept new
connections from other systems during the attack and for some time after. The attack may be
made difficult to trace, which is another reason for its popularity. Hackers may �spoof�, or
falsify, their IP addresses with relative ease.

 SYN flooding is made possible by the connection mechanism of TCP. In order to establish a
TCP connection, two devices must first complete a three-way handshake, a mechanism which
requires three packets of information to be sent between the systems. A system (client) seeking a
connection with another system (server) must first send a SYN packet to that server. The header
of this packet contains a synchronization flag and a randomly generated sequence number. If the
server is willing to accept the connection, it will return a SYN/ACK message. This is a
synchronization/acknowledgment packet and contains several important pieces of information.
The packet acknowledges the previous packet by including in its acknowledgment field the
previous sequence number incremented by one. In addition, the packet contains another
randomly generated sequence number. When the client receives the SYN/ACK packet, it will
generate an ACK packet. This packet has no sequence number, but includes an acknowledgment
for the SYN/ACK packet as before � the previous sequence number is incremented by one. The
TCP connection is established, or closed, when the server receives this last packet.

 What makes a SYN flooding attack possible is that after the second (SYN/ACK) packet, the
server must keep data for this half-open connection in memory and wait for the client to respond
with the final ACK packet. At this stage, the connection is referred to as open, because it has
been initiated but not finalized. Two packets of the three-way handshake have been sent and
received, and the server will wait a certain length of time for the third and final packet. A SYN
flooding attack scheme does not send this final ACK packet. Instead, it sends many SYN
packets in a very short period of time, trying to establish multiple connections with the server.
The server replies to all of these packets and waits for each acknowledgment. If the client sends
enough SYN packets in a short amount of time, the server�s connection buffer will overflow.
The results depend on the operating system, but in all cases the service that was attacked is
rendered useless, and legitimate users requesting connections with that service are denied [5].

3 MOTIVATION FOR VISUALIZATION

 SYN flooding attacks take place at the network level, so we must use individual packet data,
such as that produced by tcpdump or WinDump, to identify them. These programs produce log
files of packet header data. To detect an attack, one must scan through a log file looking for a
large amount of open connections being established in a short amount of time. This is possible,
but would be very time-consuming and error-prone. These log files may contain hundreds of
thousands of packet header entries per second. In addition, reading text is a serial process, which
means only a small part of the data can be focused on at any particular time. Receiving
information in this way, one may not be aware of the patterns produced by a SYN flooding

attack. An image, on the other hand, is interpreted in parallel. Large volumes of information can
be stored abstractly in a single image. This form of data is easier for the human mind to process,
which means the user may gather more data in less time. Given the fact that intrusion detection
is quickly becoming an essential part of network administration, it is our objective to make
intrusion detection easier and faster by building a tool to represent network data graphically.

4 PREVIOUS WORK

 Visualization of network data is not a new concept. In this section we present two previous
studies, both dealing with the representation of data from network log files.

 The work of Juslin (Figure 1) consists of reading tcpdump data into a Perl script, parsing it,
and displaying it with GNUPlot. The data is formatted with respect to three axes; time, number
of packets, and SDP, or source address, destination address, and destination port [3]. This
produces interesting visuals from which the user may gather a large amount of information. For
example, there are several long, narrow blocks in the visual, pointed to by arrows. These are
port scans, in which the attacker will quickly and sequentially query all the ports on a system.
Also, spikes in network traffic appear as �towers� in the graph. However, the visualization is
static. It presents a picture of network activity sometime in the past, and hence cannot be used
with realtime network traffic.

 Another interesting piece of work comes from Erbacher, Walker, and Frinckle. This
visualization (Figure 2) is more in the direction of this project, as it represents one central system
and all the clients attempting to connect to it. The network data is shown as an animation over
time that can be paused, advanced, or rewound. Hence, it is feasible to manipulate the system to
display realtime data. There is a wealth of information contained in each frame. For example,

Figure 1. Previous Work � Juslin Figure 2. Previous Work � Erbacker

the node and line colors represent suspicious activity as determined by the system, such as users
attempting to gain extended privileges. The lines themselves are of different styles which
represent the type of service being used, such as Telnet or FTP. The radius of each node
represents its network locality to the central system. The nodes near the center are likely to be
on the same LAN as the target system, while the nodes near the edge of the visualization are
connecting from completely different networks [1]. The problem with this type of visualization
is that it is abstract and non-interactive. Exact data such as time and IP addresses is consumed
by the application, and cannot be recovered through the visualization. The user may watch an
attack in progress, but is powerless to take action because there is no way to obtain the exact
time or IP address of the attacker from the application.

5 THE VISUALIZATION ENVIRONMENT

 Our visualization tool seeks to convey a large amount of relevant information to the user
while keeping the interface clean and organized. We represent network data in the form of open
and closed connections, the most relevant form for detection of SYN flooding attacks. The log
files we use represent a large number of clients connecting to a central server; these clients are
divided into arbitrary domains which surrounding a central system (Figure 3). This system has a
pair of thick lines extending to each domain; these represent links between the server and all of
the clients in a particular domain. The counterclockwise side of these links represents the open
connections to the server, while the clockwise side represents closed connections. Each link is
color-mapped on a scale of green to red representing its number of connections in relation to the
other links of the same type. The domains are mapped from black to white based on the total
number of connections between their clients and the server. The user simply clicks a button to
get the next group of open and closed connections from the log file and update the visualization
accordingly.

 The bulk of the program, consisting
of the GUI, data manipulation and
supporting code, was implemented in the
Python scripting language. A C++ class
was built to parse the log files and return
the relevant information to Python. In
our case, this relevant information is in
the form of events representing opening
and closing connections. The C++ class
parses a log of packet headers looking
for synchronization and
acknowledgment packets that are
characteristic of a three-way handshake.
A set of VTK wrappers for Python is
used to handle the graphical aspects of
the visualization. The Visualization
Toolkit is an open-source, platform-
independent 3D graphics library for
geometric rendering and image
processing.

Figure 3. NetView interface

 Perhaps the most important feature of the program is interactivity. Each log file we process
has an average of two thousand clients connecting to the central server. For clarity, these are
grouped into subdomains distributed within six top-level domains. When a domain is clicked, a
window will appear showing all the subdomains within that domain. The domain in the main
window will also change color to reflect the background color of the new window (Figure 4).
Each subdomain in the new window is mapped from black to white, representing the total
number of open connections for all the clients contained within it. A click on any subdomain
opens up a third window showing all the clients within that subdomain. These are also color-
mapped based on their numbers of open connections. The user may click on any of these
individual clients to obtain information such as their IP address and their number of open
connections. Other features include right-clicking on any domain or subdomain to return the
address of the client with the largest number of open connections within that group.

 An animation feature is included in the program. This simulates real-time data coming into
the program from the network, an objective which we eventually hope to accomplish. Another
feature of our tool is the server open connection threshold. A main concern during a SYN
flooding attack is the amount of memory used by open connections on the server. If the
maximum number of open connections is reached, the system will no longer be able to accept
incoming connection requests. A slider is provided for the user to set the buffer size of the
server. If the number of connections coming into the central system exceeds this number, the
server will flash along with the domain with the highest number of open connections at that time.

Figure 4. View of subdomains and clients within a domain

6 EXPERIMENTATION AND RESULTS

 The central idea of the program is that SYN flooding attacks may be represented by a large
number of open connections, and the method of coloring that we use will make these attacks
easily visible to the user. We had five datasets available with which to test this idea. The data is
courtesy of the Information Exploration Shootout project [2], and represented normal network
traffic along with four simulated attacks. They are provided in the form of CSV (comma-
separated value) files, parsed from tcpdump data. For security reasons, the IP addresses have
been removed. We describe the datasets and the results of our experimentation below.

6.1 Baseline.csv

 The first file available for analysis is
an eighteen-minute sample of normal
network traffic. Stepping through the file,
one can see that most open connections
get closed very quickly, usually in the
next time step. This type of behavior is
what one would expect during normal
network operation. After reading through
the entire file, it is evident from the
domain colors that connections are
relatively evenly distributed, and there are
very few open connections in comparison
to closed connections.

6.2 Net1.csv

 This log represents an IP spoofing
attack. Normally, a SYN flooding
attacker will want to disguise his location,
so packets are made untraceable with a
�spoofed�, or falsified, source address. It
is evident in the visualization that a
majority of open connections are coming
from one single domain, and right-
clicking on that domain reveals that 25%
of these connections are from one single
client. This, coupled with the fact that
there are a larger-than-average number of
open connections coming from the other
domains, may suggest that the attacker is
only spoofing his/her IP address for a
small part of the simulation.

Figure 5. Baseline traffic

Figure 6. IP Spoofing attack

Figure 8. Port scanning attack

6.3 Net2.csv

 Net2.csv is a simulated password-
guessing attack. In this type of attack, a
�dictionary� of commonly used passwords
is sent, one word at a time, to the server. If
the server indicates an incorrect password,
the attacking program will try another
word. There is some doubt as to whether
this dataset is relevant to our objective,
since password guessing is a data attack
rather than a network-level attack.
However, running this log file through the
program indicated that there were a larger-
than-normal number of closed connections
generated. This may be an indication of
multiple password-guessing attempts on
the server.

6.4 Net3.csv

 This dataset is the most visually interesting of the five. The simulated attack is port
scanning, in which an attacker would query every port on the target system, one by one, in a very
short amount of time. One would expect a large number of short-lived connections in rapid.
This was exactly what
was shown in the
visualization as the log
was parsed. The network
traffic was almost
exclusively from one
single client. In fact, this
client established over
8600 connections in only
18 minutes. Given this,
we can deduce that each
connection must be active
for a very small amount
of time. These rapid,
short connections are
exactly what are expected
of a port-scanning attack.

Figure 7. Password guessing attack

6.5 Net4.csv

 Network hopping is simulated in
net4.csv. This is simply another way of
disguising the source of an attack where
the SYN packets are routed through
multiple intermediate nodes before they
reach the central server. Visually, this log
resembles the baseline traffic log.
Connections are relatively evenly
distributed among all domains. One may
surmise that if attack packets were being
routed randomly, they would arrive at the
server through random domains, thus
appearing as normal network traffic.

7 CONCLUSION

 This tool is interesting and valuable in that it conveys more relevant information and a larger
volume of data than textual analysis of log files, the information is conveyed in an easily-
comprehensible from, and events relative to SYN flooding are highlighted and brought to the
attention of the user. We envision this program as one day being a useful tool to system
administrators.

 However, several other objectives need to be accomplished. First, the incorporation of real-
time data analysis is important to network visualization. The program currently requires
preprocessed data, but it may eventually be modified to use packet header data directly from the
network level. Also, the time dimension needs to be somehow incorporated into the program.
Perhaps in the future the program will graph open connections versus time for a selected client,
subdomain, or domain. This would be a useful tool since SYN flooding attacks are characterized
by large amounts of connections being opened in a short period of time. Among others, these
enhancements would make the program a much worthier tool for intrusion detection.

REFERENCES

[1] R. Erbacher, K. Walker, and D. Frincke, �Intrusion and Misuse Detection in Large-Scale

Systems�, in IEEE Computer Graphics and Applications, Jan-Feb 2002.

[2] The Information Exploration Shootout, The Institute for Visualization and Research.

[http://iris.cs.uml.edu:8080/network.html]

[3] J. Juslin, �Intrusion Detection and Visualization Using Perl�, O�Reilly Open Source

Convention, San Diego, 2001.

Figure 9. Network hopping attack

[4] R. Kemmerer and G. Vigna, �Intrusion Detection: A Brief History and Overview�, in
Security and Privacy, 2002.

[5] �TCP SYN Flooding and IP Spoofing Attacks�, CERT Advisory CA-96.21.

[http://www.ciac.org/ciac/bulletins/g-48.shtml]

APPENDICES

 Several reference materials follow. First is a user�s guide for the NetView tool, followed by
the slides of a presentation given on this tool on May 1, 2002. The last supplement included is
the source code to the program.

NETVIEW USER�S GUIDE

 NetView, the network data visualization tool discussed in this paper, consists of a python
script with supporting C++ code. It is invoked with a command line such as python
netview.py 2, with the optional number being 0 for baseline traffic, or 1 through 4 for net[1-
4].csv. The program will begin with the geometry set appropriately for the log file (based on
number of clients broadcasting in the file), and all connections will be cleared. Adjust the event
stepsize slider to indicate the number of events wanted for each click of the button.

 When the Get Next Events button is clicked, the window will be updated with the first group
of open and closed connections from the file will be shown. If the option Show Last 10 Events is
selected, the last ten of these will be displayed in the message box. Otherwise, the message box
will display the number of open and closed connections for each domain. As you continue to get
events, the domains and links will update their colors to reflect their numbers of open and closed
connections.

 To view an individual client�s contribution to the
visual, click on the appropriate domain. A window will
open up showing all the subdomains in that domain.
Notice that the domain�s color will match the new
windows background color. Click on the appropriate
subdomain to show a window with all the clients in that
subdomain. The window coloring also applies here. A
click on any client brings up a message box with that
client�s address and number of open connections.

 QuickFind, server information, and animation are
three important features. In an attack situation, the user
will want to know immediately which particular client
is initiating the most open connections. One way is to
descend through the domain and subdomain level, each
time clicking on the object with the highest number of
open connections. An alternative to this is to click with
the right mouse button on the domain or subdomain of
interest. This will bring up a message box with the
address of the client that has the highest number of
open connections in that group (Figure 10). The server,
when clicked on, will display its number of open and
closed connections as well as the number of packets it

has sent and received (Figure 11). Animation is toggled on and off with the Animation button,
and its speed is controlled both by the slider and the event stepsize.

Figure 10. QuickFind

Figure 11. Server info

Source Code

 The source code to NetView consists of five files: netview.py, domain.py,
subdomain.py, link.py, and netread.cxx.

NETVIEW.PY

#!/usr/bin/python

from newRenderWidget import *
import tkSimpleDialog, tkMessageBox
from domain import Domain
from link import Link
from time import sleep
from string import atoi
import netread

NUM_SOURCES = [1685, 2283, 1942, 2141, 2278]

FILENAMES = ["base.csv", "net1.csv","net2.csv",
 "net3.csv", "net4.csv"]

USAGE = """Usage: python netview.py [n]
 where n is:
 0 - baseline.csv
 1 - net1.csv
 2 - net2.csv
 3 - net3.csv"""

class NetView(Frame):

 def __init__(self, parent=None):

 if len(sys.argv) < 2: fnum = 0
 else:
 try: fnum = int(sys.argv[1])
 except ValueError:
 print USAGE
 sys.exit()
 if fnum < 0 or fnum > 4:
 print USAGE
 sys.exit()

 open_coords = [[[-10, 0, -.3], [-.5, 0, -.3]],
 [[-5.4, 0, 8.66], [-.4, 0, 0]],
 [[4.6, 0, 8.66], [-.4, 0, 0]],
 [[10, 0, .3], [.5, 0, .3]],
 [[5.4, 0, -8.66], [.4, 0, 0]],
 [[-4.6, 0, -8.66], [.4, 0, 0]]]

 clsd_coords = [[[-10, 0, .3], [-.5, 0, .3]],
 [[-4.6, 0, 8.66], [.4, 0, 0]],
 [[5.4, 0, 8.66], [.4, 0, 0]],
 [[10, 0, -.3], [.5, 0, -.3]],
 [[4.6, 0, -8.66], [-.4, 0, 0]],
 [[-5.4, 0, -8.66], [-.4, 0 ,0]]]

 attk_coords = [[[-10, 0, 0], [0, 0, 0]],
 [[-5, 0, 8.66], [0, 0, 0]],
 [[5, 0, 8.66], [0, 0, 0]],
 [[10, 0, 0], [0, 0, 0]],
 [[5, 0, -8.66], [0, 0, 0]],
 [[-5, 0, -8.66], [0, 0, 0]]]

 # --- Build render windows --- #

 ren1 = vtkRenderer()
 ren2 = vtkRenderer()
 ren1.SetBackground(.1, .3, .5)
 ren2.SetBackground(.1, .3, .5)
 ren1.SetViewport(0, 0, .50, 1)
 ren2.SetViewport(.50, 0, 1, 1)

 srvSrc = vtkSphereSource()
 srvSrc.SetRadius(1.5)
 srvSrc.SetThetaResolution(16)

 texMap = vtkTextureMapToSphere()
 texMap.SetInput(srvSrc.GetOutput())

 srvMap = vtkDataSetMapper()
 srvMap.SetInput(texMap.GetOutput())

 reader = vtkBMPReader()
 reader.SetFileName("textures/server.bmp")
 self.txr = vtkTexture()
 self.txr.SetInput(reader.GetOutput())
 self.txr.InterpolateOn()

 self.servAct = vtkActor()
 self.servAct.SetMapper(srvMap)
 self.servAct.SetTexture(self.txr)

 ren1.AddActor(self.servAct)
 ren2.AddActor(self.servAct)

 self.lut_all = vtkLookupTable()
 self.lut_all.SetHueRange(.33, 0)
 self.lut_all.SetSaturationRange(1, 1)
 self.lut_all.SetValueRange(1, 1)

 self.lut_open = vtkLookupTable()
 self.lut_open.SetHueRange(.33, 0)
 self.lut_all.SetSaturationRange(1, 1)
 self.lut_all.SetValueRange(1, 1)

 self.lut_domain = vtkLookupTable()
 self.lut_domain.SetHueRange(0, 0)
 self.lut_domain.SetSaturationRange(0, 0)
 self.lut_domain.SetValueRange(.2, 1)

 self.dom = range(6)
 self.open_link = range(6)
 self.clsd_link = range(6)
 self.attk_link = range(6)

 self.filename = FILENAMES[fnum]
 self.num_srcs = NUM_SOURCES[fnum]
 self.num_subs = int(math.ceil(math.sqrt(self.num_srcs/6.0)))
 factor = math.ceil(self.num_srcs/6)

 for i in range(5):
 self.dom[i] = Domain(self, i, self.num_subs, factor, i*factor+1)

 self.dom[5] = Domain(self, 5, self.num_subs, self.num_srcs-(5*factor), 5*factor+1)

 for i in range(6):

 self.dom[i].setPosition(attk_coords[i][0])

 ren1.AddActor(self.dom[i].getSphere())
 ren2.AddActor(self.dom[i].getSphere())

 self.open_link[i] = Link(i)
 self.clsd_link[i] = Link(i)
 self.attk_link[i] = Link(i)

 ren1.AddActor(self.open_link[i].getActor())
 ren1.AddActor(self.clsd_link[i].getActor())
 ren2.AddActor(self.attk_link[i].getActor())

 self.open_link[i].setPoints(open_coords[i][0], open_coords[i][1])
 self.clsd_link[i].setPoints(clsd_coords[i][0], clsd_coords[i][1])
 self.attk_link[i].setPoints(attk_coords[i][0], attk_coords[i][1])

 # --- Build GUI --- #

 Frame.__init__(self, parent)
 self.master.title("NetView -- " + self.filename)
 self.menubar=Frame(self, relief=RAISED, bd=2)
 self.menubar.pack(side=TOP, fill=X)

 self.msg = StringVar()
 self.stepsize = IntVar()
 self.speed = IntVar()
 self.threshold = IntVar()
 self.show_what = IntVar()
 self.msg.set("\n\n\n\n\n\n\n\n\n\n\n")
 self.threshold.set(40)
 self.stepsize.set(50)
 self.show_what.set(0)

 self.animOn = 0
 self.cur_event = 0
 self.maxall = self.maxopen = self.maxclsd = 0
 self.log = None

 filembutton = Menubutton(self.menubar, text="File", underline=0)
 filembutton.pack(side=LEFT)
 filemenu = Menu(filembutton, tearoff=0)
 filemenu.add_command(label="Reset", command=(lambda s=self: s.open(1)))
 filemenu.add_separator()
 filemenu.add_command(label="Exit", command=self.quit)
 filembutton['menu'] = filemenu

 self.win = newRenderWidget(self, self, width=1000, height=450)
 self.win.GetRenderWindow().AddRenderer(ren1)
 self.win.GetRenderWindow().AddRenderer(ren2)
 cam1 = ren1.GetActiveCamera()
 cam1.SetPosition(0, 90, 0)
 cam1.SetFocalPoint(0, 0, 0)
 cam1.SetViewUp(0, 0, -1)
 cam1.Zoom(1.8)
 cam2 = ren2.GetActiveCamera()
 cam2.SetPosition(0, 90, 0)
 cam2.SetFocalPoint(0, 0, 0)
 cam2.SetViewUp(0, 0, -1)
 cam2.Zoom(1.8)
 self.win.pack(side=TOP, padx=10, pady=3)

 mid_frm = Frame(self)
 Label(mid_frm, text="All connections", width=70).pack(side=LEFT)
 Label(mid_frm, text="Open connections", width=70).pack(side=RIGHT)
 mid_frm.pack(side=TOP)

 low_frm = Frame(self)
 low_lf_frm = Frame(low_frm, width=300)
 low_mid_frm = Frame(low_frm, width=300)
 low_rt_frm = Frame(low_frm, width=300)

 Label(low_lf_frm, text="").pack(side=TOP)
 Radiobutton(low_lf_frm, text="Show Last 10 Events",
 variable=self.show_what, value=1).pack(side=TOP, anchor=W)
 Radiobutton(low_lf_frm, text="Show Connection Stats",
 variable=self.show_what, value=0).pack(side=TOP, anchor=W)
 Label(low_lf_frm, text="").pack(side=TOP)

 Scale(low_lf_frm, label="Open Connection Threshold", variable=self.threshold,
 orient=HORIZONTAL, width=10, length=200,
 to=200).pack(side=TOP)
 Scale(low_lf_frm, label="Event Stepsize", variable=self.stepsize,
 orient=HORIZONTAL, width=10, length=200, from_=1,
 to=200).pack(side=TOP)
 Label(low_lf_frm, text="").pack(side=TOP)
 close_btn = Button(low_lf_frm, text="Close", width=30, command=self.quit)
 close_btn.pack(padx=10, pady=10)

 self.status_lbl = Label(low_mid_frm, text="", font=("Helvetica", 18))
 self.status_lbl.pack(side=TOP)
 next_btn = Button(low_mid_frm, text="Get Next Event(s) --->",
 width=30, height=3, command=self.nextEvents)
 next_btn.pack(padx=10, pady=10)
 Scale(low_mid_frm, label="Animation Speed", variable=self.speed,
 orient=HORIZONTAL, width=10, length=200, from_=1,
 to=500).pack(side=TOP)
 Label(low_mid_frm, text="").pack(side=TOP)
 self.anim_btn = Button(low_mid_frm, text="Start Animation",
 width=30, command=self.toggleAnim)
 self.anim_btn.pack(padx=10, pady=10)

 Message(low_rt_frm, textvariable=self.msg, width=200,
 bg="gray", bd=3).pack(side=TOP, anchor=N)

 low_lf_frm.pack(side=LEFT)
 low_mid_frm.pack(side=LEFT, padx=100)
 low_rt_frm.pack(side=LEFT)
 low_frm.pack()

 self.open(0)
 self.pack()

 def open(self, reset):

 if reset == 1: self.log.reset()
 else:
 self.log = netread.NetReader("data/parsed/" + self.filename)

 self.cur_event = 0
 self.maxall = 10
 self.maxopen = 5

 self.lut_all.SetRange(0, 10)
 self.lut_all.Build()
 self.lut_open.SetRange(0, 5)
 self.lut_open.Build()
 self.lut_domain.SetRange(0, 10)
 self.lut_domain.Build()

 for i in range(6):
 self.dom[i].reset()
 c1 = self.lut_all.GetColor(0)
 c2 = self.lut_open.GetColor(0)
 self.open_link[i].setColor(c1)
 self.clsd_link[i].setColor(c1)
 self.attk_link[i].setColor(c2)

 self.updateStatusLbl()
 self.updateServerStatus()

 if self.show_what == 1:
 self.msg.set("Last Events:\n\n\n\n\n\n\n\n")
 else:
 self.msg.set("Connection stats (open, closed):\n\n\n\n\n\n\n\n")

 self.win.Render()

 def updateStatusLbl(self):

 sum = 0
 for i in range(6):
 sum = sum + self.dom[i].open_conns

 msg = "Event " + `self.cur_event` + "\n" + "Open connections: " + `sum`
 self.status_lbl.configure(text=msg)

 def toggleAnim(self):

 if self.animOn == 0:
 self.animOn = 1
 self.anim_btn.config(text="Stop Animation")
 self.nextEvents()
 else:
 self.animOn = 0
 self.anim_btn.config(text="Start Animation")

 def nextEvents(self):

 newmsg = "Last Events:\n\n"
 for i in range(self.stepsize.get()):
 conn = self.log.getNextEvent()

 if conn == 0:
 if i == 0:
 if self.animOn == 1:
 self.animOn = 0
 self.anim_btn.config(text="Start Animation")
 return
 else:
 break

 self.cur_event = self.cur_event + 1

 if conn < 0: # connection opened

 x = int(abs(conn)*6.0/self.num_srcs)
 self.dom[x].addOpenConn(abs(conn))
 self.open_link[x].setColorFrom(self.lut_all, self.dom[x].open_conns)
 self.attk_link[x].setColorFrom(self.lut_open, self.dom[x].open_conns)
 self.dom[x].setColorFrom(self.lut_domain)
 if self.stepsize.get()-i < 11:
 newmsg = newmsg + "Connection opened: client " + `-conn` + "\n"

 else: # connection closed

 x = int(conn*6.0/self.num_srcs)
 self.dom[x].addClsdConn(conn)
 self.open_link[x].setColorFrom(self.lut_all, self.dom[x].open_conns)
 self.clsd_link[x].setColorFrom(self.lut_all, self.dom[x].clsd_conns)
 self.attk_link[x].setColorFrom(self.lut_open, self.dom[x].open_conns)
 self.dom[x].setColorFrom(self.lut_domain)
 if self.stepsize.get()-i < 11:
 newmsg = newmsg + "Connection closed: client " + `conn` + "\n"

 # correct the range of the color maps

 while self.dom[x].open_conns > self.maxall or self.dom[x].clsd_conns > self.maxall:
 self.maxall = 2*self.maxall
 self.lut_all.SetRange(0, self.maxall)
 self.lut_all.Build()
 self.lut_domain.SetRange(0, self.maxall)
 self.lut_domain.Build()
 for i in range(6):
 self.open_link[i].setColorFrom(self.lut_all, self.dom[i].open_conns)
 self.clsd_link[i].setColorFrom(self.lut_all, self.dom[i].clsd_conns)
 self.dom[i].setColorFrom(self.lut_domain)

 while self.dom[x].open_conns > self.maxopen:
 self.maxopen = 2*self.maxopen
 self.lut_open.SetRange(0, self.maxopen)
 self.lut_open.Build()
 for i in range(6):
 self.attk_link[i].setColorFrom(self.lut_open, self.dom[i].open_conns)

 if self.show_what.get() == 0:
 newmsg = "Connection Stats (open, closed):\n\n"
 for i in range(6):
 newmsg = newmsg+"Domain "+`i`+": "+`self.dom[i].open_conns`
 newmsg = newmsg+", "+`self.dom[i].clsd_conns`+"\n"

 self.msg.set(newmsg)

 num = max = 0
 for i in range(6):
 if self.dom[i].open_conns > max:
 max = self.dom[i].open_conns
 num = i

 self.updateServerStatus()
 self.updateStatusLbl()
 self.win.Render()

 if self.animOn == 0:
 c = self.dom[num].getColor()
 self.dom[num].setColor([1, .5, .5])
 self.win.Render()
 sleep(.25)
 self.dom[num].setColor(c)
 self.win.Render()

 else:
 self.after(501-self.speed.get(), (lambda s=self: s.nextEvents()))

 def updateServerStatus(self):

 sum = most = 0
 for i in range(6):
 sum = sum + self.dom[i].open_conns
 if self.dom[i].open_conns > self.dom[most].open_conns:
 most = i

 if sum < self.threshold.get(): self.servAct.GetProperty().SetColor(1, 1, 1)
 else: self.servAct.GetProperty().SetColor(1, .5, .5)

 def showServerInfo(self):

 open_total = clsd_total = p_sent = p_rcvd = 0

 for i in range(6):
 open_total = open_total + self.dom[i].open_conns
 clsd_total = clsd_total + self.dom[i].clsd_conns

 p_sent = open_total + clsd_total
 p_rcvd = open_total + (clsd_total * 2)

 msg = "Open connections: " + `open_total` + "\n"
 msg = msg + "Closed connections: " + `clsd_total` + "\n\n"
 msg = msg + "Packets sent: " + `p_sent` + "\n"
 msg = msg + "Packets received: " + `p_rcvd`

 tkMessageBox.showinfo("Server information", msg)

 def actorPicked(self, actor):

 if actor == self.servAct:
 self.showServerInfo()
 return

 for i in range(6):
 if actor == self.dom[i].getSphere():
 self.dom[i].openWin()
 break

 def showMostConns(self, actor):

 for i in range(6):
 if actor == self.dom[i].getSphere():
 self.dom[i].showMostConns(None)
 break

if __name__ == '__main__': NetView().mainloop()

DOMAIN.PY

#!/usr/bin/python

from vtkpython import *
from Tkinter import *
from subdomain import Subdomain
from newRenderWidget import *
from whrandom import *
import tkMessageBox

class Domain:

 def __init__(self, cb, n, sd, srcs, start):

 self.callback = cb
 self.num = n
 self.open_conns = 0
 self.clsd_conns = 0
 self.first = start
 self.num_subs = int(math.ceil(srcs / sd))
 self.subdom = range(self.num_subs)
 self.old_color = [0, 0, 0]

 for i in range(self.num_subs-1):
 self.subdom[i] = Subdomain(self, i, n, self.num_subs, start+(i*self.num_subs))

 self.subdom[self.num_subs-1] = Subdomain(self, sd-1, n, srcs-((sd-1)*self.num_subs),
start+(sd-1)*self.num_subs)

 #-----------------------
 # Build subdomain window

 self.visible = 0
 self.ren = vtkRenderer()
 self.window = Toplevel()
 self.window.withdraw()
 self.window.title("Domain "+`self.num`)
 self.renwin = newRenderWidget(self.window, self, width=400, height=400)
 self.renwin.GetRenderWindow().AddRenderer(self.ren)
 Button(self.window, width=50, text="Close", command=self.closeWin).pack(side=BOTTOM)

 for i in range(self.num_subs):

 a = i*2.*math.pi/self.num_subs
 self.subdom[i].setPosition(3*math.cos(a), 0, 3*math.sin(a))
 self.ren.AddActor(self.subdom[i].getSphere())

 cam = self.ren.GetActiveCamera()
 cam.SetPosition(0, 24, 0)
 cam.SetViewUp(0, 0, -1)
 cam.Zoom(1.6)

 self.renwin.pack()

 #---
 # Domain actor (to be used in main window)

 self.src = vtkSphereSource()
 self.src.SetRadius(3)
 self.src.SetThetaResolution(16)
 texMap = vtkTextureMapToSphere()
 texMap.SetInput(self.src.GetOutput())
 s_map = vtkDataSetMapper()
 s_map.SetInput(texMap.GetOutput())
 reader = vtkBMPReader()
 reader.SetFileName("textures/network.bmp")
 txr = vtkTexture()
 txr.SetInput(reader.GetOutput())
 self.actor = vtkActor()
 self.actor.SetMapper(s_map)
 self.actor.SetTexture(txr)

 def reset(self):

 self.open_conns = self.clsd_conns = 0
 self.actor.GetProperty().SetColor(.5, .5, .5)
 for i in range(self.num_subs):
 self.subdom[i].reset()

 def setPosition(self, p):

 self.src.SetCenter(p[0], p[1], p[2])

 def setColor(self, c):

 self.actor.GetProperty().SetColor(c[0], c[1], c[2])

 def setColorFrom(self, lut):

 c = lut.GetColor(self.open_conns + self.clsd_conns)
 self.actor.GetProperty().SetColor(c[0], c[1], c[2])

 def getColor(self): return self.actor.GetProperty().GetColor()
 def getSphere(self): return self.actor

 def addOpenConn(self, client):

 self.open_conns = self.open_conns + 1
 sub = int((client-self.first) / self.num_subs)
 if sub >= len(self.subdom): return
 self.subdom[sub].addOpenConn(client)

 def addClsdConn(self, client):

 self.open_conns = self.open_conns - 1
 self.clsd_conns = self.clsd_conns + 1
 sub = int((client-self.first) / self.num_subs)
 if sub >= len(self.subdom): return
 self.subdom[sub].addClsdConn(client)

 def openWin(self):

 max = 0
 for i in range(len(self.subdom)):
 if self.subdom[i].sumOpen() > max:
 max = self.subdom[i].sumOpen()

 lut = vtkLookupTable()
 lut.SetHueRange(0, 0)
 lut.SetSaturationRange(0, 0)
 lut.SetValueRange(.2, 1)
 lut.SetRange(0, max+1)
 lut.Build()

 for i in range(len(self.subdom)):
 self.subdom[i].setColorFrom(lut)

 self.visible = 1
 self.old_color = self.getColor()
 c = [random(), random(), random()]
 self.setColor(c)
 self.ren.SetBackground(c)
 self.callback.win.Render()
 self.window.deiconify()

 def closeWin(self):

 self.visible = 0
 self.setColor(self.old_color)
 self.window.withdraw()
 self.callback.win.Render()

 def actorPicked(self, a):

 for i in range(len(self.subdom)):
 if a == self.subdom[i].getSphere():
 self.subdom[i].openWin()
 break

 def showMostConns(self, a):

 if a == None:
 max = 0
 sd = 0
 tmp = range(2)
 for i in range(len(self.subdom)):
 tmp = self.subdom[i].maxOpen()
 if tmp[0] > max:
 max = tmp[0]
 sd = i
 if max != 0:
 self.subdom[sd].showMostConns(None)
 else:
 tkMessageBox.showinfo("QuickFind", "No open connections")

 for i in range(len(self.subdom)):
 if a == self.subdom[i].getSphere():
 self.subdom[i].showMostConns(None)
 break

SUBDOMAIN.PY

#!/usr/bin/python

import tkMessageBox
from newRenderWidget import *
from Tkinter import *
from vtkpython import *
from whrandom import *

import math

class Subdomain:

 def __init__(self, cb, n, dn, srcs, start):

 self.callback = cb
 self.domain_num = dn
 self.num = int(n)
 self.open_conns = range(srcs)
 self.clsd_conns = range(srcs)
 self.num_srcs = int(srcs)
 self.first = int(start)
 self.source = range(self.num_srcs)
 self.old_color = [0, 0, 0]

 sphr = vtkSphereSource()
 texMap2 = vtkTextureMapToSphere()
 texMap2.SetInput(sphr.GetOutput())
 map2 = vtkDataSetMapper()
 map2.SetInput(texMap2.GetOutput())
 reader2 = vtkBMPReader()
 reader2.SetFileName("textures/source.bmp")
 txr2 = vtkTexture()
 txr2.SetInput(reader2.GetOutput())

 for i in range(self.num_srcs):

 self.open_conns[i] = self.clsd_conns[i] = 0

 self.source[i] = vtkActor()
 self.source[i].SetMapper(map2)
 self.source[i].SetTexture(txr2)

 self.visible = 0
 self.ren = None
 self.window = None
 self.renwin = None

 # ---
 # Subdomain actor (to be used in domain window)

 texMap1 = vtkTextureMapToSphere()
 texMap1.SetInput(sphr.GetOutput())
 map1 = vtkDataSetMapper()
 map1.SetInput(texMap1.GetOutput())
 reader1 = vtkBMPReader()
 reader1.SetFileName("textures/lan.bmp")
 txr1 = vtkTexture()
 txr1.SetInput(reader1.GetOutput())
 self.sphere = vtkActor()
 self.sphere.SetMapper(map1)
 self.sphere.SetTexture(txr1)

 def setPosition(self, x, y, z): self.sphere.SetPosition(x, y, z)
 def getNumSrcs(self): return len(self.source)
 def getSphere(self): return self.sphere

 def reset(self):

 for i in range(self.num_srcs):
 self.open_conns[i] = self.clsd_conns[i] = 0

 def setColor(self, c):

 self.sphere.GetProperty().SetColor(c[0], c[1], c[2])

 def setColorFrom(self, lut):

 c = lut.GetColor(self.sumOpen())
 self.sphere.GetProperty().SetColor(c[0], c[1], c[2])

 def sumOpen(self):

 sum = 0
 for i in range(self.num_srcs):
 sum = sum + self.open_conns[i]
 return sum

 def maxOpen(self):

 max = range(2)
 max[0] = 0
 max[1] = 0
 for i in range(self.num_srcs):
 if self.open_conns[i] > max[0]:
 max[0] = self.open_conns[i]
 max[1] = i

 return max

 def addOpenConn(self, client):

 c = client-self.first
 if c > self.num_srcs or c < 0: return
 self.open_conns[c] = self.open_conns[c] + 1

 def addClsdConn(self, client):

 c = client-self.first
 if c > self.num_srcs or c < 0: return
 self.open_conns[c] = self.open_conns[c] - 1
 self.clsd_conns[c] = self.clsd_conns[c] + 1

 def openWin(self):

 self.ren = vtkRenderer()
 self.window = Toplevel()
 self.window.title("Domain " + `self.domain_num` + " -- Subdomain " + `self.num`)
 self.renwin = newRenderWidget(self.window, self, width=400, height=400)
 self.renwin.GetRenderWindow().AddRenderer(self.ren)
 Button(self.window, width=50, text="Close", command=self.closeWin).pack(side=BOTTOM)

 for i in range(self.num_srcs):

 a = i*2.*math.pi/self.num_srcs
 self.source[i].SetPosition(3*math.cos(a), 0, 3*math.sin(a))
 self.ren.AddActor(self.source[i])

 cam = self.ren.GetActiveCamera()
 cam.SetPosition(0, 24, 0)
 cam.SetFocalPoint(0, 0, 0)
 cam.SetViewUp(0, 0, -1)
 cam.SetClippingRange(1, 100)
 cam.Zoom(1.6)

 self.renwin.pack()

 lut = vtkLookupTable()
 lut.SetHueRange(0, 0)
 lut.SetSaturationRange(0, 0)
 lut.SetValueRange(.2, 1)
 lut.SetRange(0, self.maxOpen()[0]+1)

 lut.Build()

 for i in range(self.num_srcs):
 c = lut.GetColor(self.open_conns[i])
 self.source[i].GetProperty().SetColor(c[0], c[1], c[2])

 self.visible = 1
 self.old_color = self.sphere.GetProperty().GetColor()
 c = [random(), random(), random()]
 self.setColor(c)
 self.ren.SetBackground(c)
 self.callback.renwin.Render()
 self.window.deiconify()

 def closeWin(self):

 self.visible = 0
 self.setColor(self.old_color)
 self.window.withdraw()
 self.callback.renwin.Render()

 def actorPicked(self, a):

 for i in range(self.num_srcs):
 if a == self.source[i]:
 msg = "Client address: " + `i+self.first` + "\n"
 msg = msg + "Open connections: " + `self.open_conns[i]`
 tkMessageBox.showinfo("Client information", msg)
 break

 def showMostConns(self, a):

 max = 0
 client = 0

 if a == None:
 for i in range(self.num_srcs):
 if self.open_conns[i] > max:
 max = self.open_conns[i]
 client = i

 for i in range(self.num_srcs):
 if a == self.source[i]:
 max = self.open_conns[i]
 client = i

 if max != 0:
 msg = "Client address: " + `client+self.first` + "\n"
 msg = msg + "Open connections: " + `max`
 tkMessageBox.showinfo("QuickFind", msg)
 else:
 tkMessageBox.showinfo("QuickFind", "No open connections")

LINK.PY

#!usr/bin/python

from vtkpython import *

class Link:

 def __init__(self, num):

 self.number = num

 self.src = vtkLineSource()
 tube = vtkTubeFilter()
 tube.SetInput(self.src.GetOutput())
 tube.SetRadius(.4)

 tube.SetNumberOfSides(12)
 map = vtkPolyDataMapper()
 map.SetInput(tube.GetOutput())

 self.act = vtkActor()
 self.act.SetMapper(map)

 def setPoints(self, p1, p2):
 self.src.SetPoint1(p1[0], p1[1], p1[2])
 self.src.SetPoint2(p2[0], p2[1], p2[2])

 def setColor(self, c):
 self.act.GetProperty().SetColor(c[0], c[1], c[2])

 def setColorFrom(self, lut, num):
 self.setColor(lut.GetColor(num))

 def getActor(self): return self.act

NETREAD.CXX

#include <stdlib.h>
#include <fstream.h>
#include <string.h>

// 0 - time
// 1 - source addr
// 2 - source port
// 3 - dest addr
// 4 - dest port
// 5 - flag
// 6 - seq num 1
// 7 - seq num 2
// 8 - ack
// 9 - win
// 10 - buf
// 11 - ulen
// 12 - op

enum Fields { TIME, SRC_ADDR, SRC_PORT, DEST_ADDR, DEST_PORT,
 FLAG, SEQ1, SEQ2, ACK, WIN, BUF, ULEN, OP };

class NetReader
{
 private:

 ifstream in;

 int open_conns[20000], num_open, line;

 char str[400], *ptr[13], *tmp;
 char filename[50];

 public:

 NetReader(const char* fn)
 {
 strcpy(filename, fn);
 reset();
 }

 int getNextEvent()
 {
 int conn;

 in.getline(str, 400);

 while(!in.eof())
 {
 line++;
 tokenize();

 if(!strcmp(ptr[FLAG], "S"))
 if(strcmp(ptr[ACK], ""))
 // response packet -- ack field is occupied
 {
 conn = atoi(ptr[DEST_ADDR]);
 if(conn != 2)
 // we don't want server-initiated connections
 {
 open_conns[num_open++] = conn;
 return -conn; // client has opened connection
 }
 }

 if(!strcmp(ptr[FLAG], "."))
 if(!strcmp(ptr[SEQ1], "") && !strcmp(ptr[ACK], "1"))
 // final connection packet -- no seq. num's and ack = 1
 {
 conn = atoi(ptr[SRC_ADDR]);
 if(conn != 2)
 // we don't want server-initiated connections
 {
 for(int i=0; i<num_open; i++)
 if(open_conns[i] == conn)
 // remove client from open connection list
 {
 open_conns[i] = open_conns[--num_open];
 return conn; // client has closed connection
 }
 }
 }

 in.getline(str, 400);
 }

 return 0; // end of file
 }

 void tokenize() // split up the header; fields are pointed to by ptr[]
 {
 ptr[TIME] = str;

 for(int i=1; i<13; i++)
 {
 tmp = strchr(ptr[i-1], ',');
 *tmp = '\0';
 ptr[i] = tmp+1;
 }
 }

 void reset()
 {
 num_open = line = 1;
 in.close();
 in.open(filename);

 if(!in)
 {
 cout << "Error: File \"" << filename << "\" not found.";
 cout << endl << " Check path." << endl;
 return;
 }

 in.getline(str, 400);
 }
};

