
IMAGE REGISTRATION IN AIRBORNE REMOTE SENSING

by

Michael Williams Funk

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in the

Department of Computer Science

Charlotte

2006

Approved by:

Dr. Kalpathi R. Subramanian

Dr. M. Taghi Mostafavi

Dr. Kayvan Najarian



ii

c©2006
Michael Williams Funk

ALL RIGHTS RESERVED



iii

ABSTRACT

MICHAEL WILLIAMS FUNK. Image registration in airborne remote sensing. (Un-

der the direction of DR. KALPATHI R. SUBRAMANIAN)

The primary topic is an algorithm for image registration which is especially well-

suited to the types of images found in airborne remote sensing applications. A brief

overview of the field of remote sensing is given, prior to discussion of the registration

algorithm itself.

Image registration is the process of associating the contents of one image with

those of another. For example, an aircraft might image the same terrain multi-

ple times on different days and from slightly different perspectives. If a registra-

tion mechanism is available to warp the images’ contents into a common geometric

frame of reference, then a number of very useful applications become possible. These

applications include three-dimensional terrain modelling, automated mapping, and

monitoring environmental changes over time.

The applications of registered imagery are described, but the main focus is on

the actual image registration algorithm. The algorithm is a two-stage process. The

first stage, initial alignment, generates a rough estimate of the images’ geometric

relationship using either user input or data captured from the aircraft’s navigation

system. The second stage, correlated alignment, fine tunes this estimation using

pattern matching algorithms on the images’ pixel data. The effects of the algorithm on

a number of image pairs are demonstrated, as well as several techniques for evaluating

the performance of the algorithm.
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CHAPTER 1: REMOTE SENSING

In a very broad sense, remote sensing can be described as acquiring information

about an object or a region from a distance, by examining radiation reflected or

emitted by it. In practice, remote sensing is primarily applications of airborne or

satellite-based imaging systems. An imaging system can be defined as the combina-

tion of one or more sensors (for example, an infrared camera), an imaging platform

(such as an aircraft or a satellite), and any supporting mechanical, electrical, or com-

puter systems which assist in mission planning and execution, and data capture and

exploitation. Supporting systems might include an image processing workstation,

a GPS (global positioning system) receiver, an INS (inertial navigation system), a

gimbal (a turret-like pointing system for one or more sensors), and optics to enhance

the resolution of a camera, among many other possibilities.

Traditionally, images were captured on film and analyzed by hand using specialized

equipment. Digital imaging devices and software-based analysis techniques have since

become the norm for most applications. In some cases, this has simply streamlined

the processes used by image analysts. However, it has also enabled a number of

automated image processing applications which were not possible before.

The ability to perform pixel-level (or subpixel) image registration is a core re-

quirement of many different remote sensing applications. At a very high level, image

registration is the process of determining the location of common features in a pair

of images of the same scene. If a particular object (such as a structure or a natural

feature) is visible in two different images of the same scene, it is almost always in

different pixel locations in the two images. Say that an object is visible in both im-

ages, and is identified as being at pixel coordinate (x0, y0) in the first image. In the

second image, the same object is identified as being at pixel coordinate (x1, y1). The

difference between the two coordinates may be due to a number of things. The object

may have moved between the times at which the two images were taken. It is much
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more likely, however, that most or all of the differences between the two sets of pixel

coordinates are due to the camera having a different position or orientation. Regis-

tration reveals the mapping between each pixel in one image and the corresponding

pixel, based on image content, in the second image.

1.1 Sensors

For the applications described here, the sensors involved are generally digital imag-

ing systems. These sensors can be loosely categorized based on a few general char-

acteristics. The first characteristic is the frequency (or frequencies) of radiation they

are sensitive to. If the sensor is sensitive to more than one frequency, it is known as

a multispectral system. For example, one of the primary sensors on the LANDSAT 7

satellite is the ETM+ (enhanced thematic mapper plus). The ETM+ is a multispec-

tral system which is sensitive to radiation centered around 8 different frequencies.

From an image processing perspective, there are 8 different samples associated with

each pixel; traditional image processing usually only deals with a single sample (for

grayscale images) or 3 samples (for color images).

Beyond multispectral systems are hyperspectral systems. The distinction between

multispectral and hyperspectral is loose and not formally defined. In general, a mul-

tispectral system samples a small number of frequencies over relatively large band-

widths, whereas a hyperspectral system samples a large number of frequencies over

relatively small bandwidths.

The frequency (or frequencies) a sensor is sensitive to dictates a number of other

characteristics of the system, including the nature of the radiation detected by the

system and the type of information contained in its images:

• Infrared sensors generally detect radiation emitted by objects in a scene; the

magnitude of the radiation is highly correlated with the temperature of a given

object.
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• Optical sensors detect radiation at or near the frequencies sensed by the human

eye (visible light). The radiation they detect generally originates from the sun

or artificial lighting, and reflects off of the objects in a scene before making its

way to the sensor. The images closely resemble what a human observer would

see, increasing interpretability by human analysts.

• Microwave sensors, or imaging radars, emit microwave radiation and detect the

reflected signal. The most advanced type of imaging radar is a SAR (synthetic

aperture radar). A SAR emits a large number of microwave pulses over a short

period of time, then integrates their returns to form a single, high-resolution

image. Because a SAR emits the radiation which it later detects after reflection,

it is known as an active sensor. In contrast, infrared and optical sensors are

passive sensors, because the radiation they detect originates from elsewhere.

The magnitude of a given pixel in a SAR image is generally due to material

properties (especially roughness) of an object’s surface. Jakowatz [5] is an excel-

lent overview of the SAR image formation process, as well as image processing

algorithms which are unique to SAR.

The frequency also determines a number of other operational capabilities. Infrared

and microwave sensors operate equally well at night, whereas optical sensors are sorely

limited without daylight. Microwave radiation is not affected by smoke or clouds, so

SARs are useful in many situations where infrared or optical sensors are unuseable.

Unfortunately, the nature of microwave radiation is such that SAR images contain

less detail and more noise than infrared or optical images. The point is, each type of

sensor has its own strengths and weaknesses; there are also many applications which

are unique to each one.
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1.2 Supporting technologies

Many airborne imaging applications are dependent on technologies other than

the sensors themselves. An essential component in most systems is a GPS (global

positioning system) receiver integrated with an INS (inertial navigation system).

The GPS is composed of a network of satellites and a number of ground control

stations spread throughout the world. The system is under the control of the United

States Department of Defense, although it is widely used for both civilian and military

applications. The purpose of a GPS receiver is to determine the user’s position based

on analysis of signals transmitted by the satellites. Each satellite emits a unique radio

signal on two different frequencies, known as L1 (at 1575.42 MHz) and L2 (at 1227.60

MHz). The L1 signal is intended for civilian use. The L2 signal is intended for military

use only. L1 is used to broadcast both a cleartext and an encrypted signal, whereas

the signal on L2 contains only encrypted data. Civilian GPS receivers can access

the unencrypted L1 signal; military GPS receivers with the proper cryptographic

hardware and private keys can access the encrypted signals on L1 and L2. The

primary benefit of a military receiver is the ability to compute a much more accurate

position than is possible with the unencrypted signal alone.

Kaplan [6] provides an excellent overview of GPS technologies and applications.

For greater depth, the “bible” of GPS engineering is generally considered to be the

two-volume set published by the AIAA [10, 11].

The basic GPS concept is fairly simple. Every element of the GPS (satellites,

ground control stations, and receivers) has a clock that is kept synchronized with

every other element. The receiver maintains a continually updated database of each

satellite’s orbital parameters, and can compute each satellite’s position in 3D space

as a function of time. Signal processing hardware and software within the receiver

enables the receiver to measure its range to each satellite. Therefore, the receiver

knows when it received a signal, it knows which satellite a signal comes from, and it
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knows its distance to that satellite. Because the signal propagates through free space

at the speed of light, the receiver can also compute the time of transmission of the

signal. Using its knowledge of the satellite orbits, it computes the position of that

satellite at the time of transmission.

At this point, the receiver knows its range to a number of satellites, and it knows

each satellite’s position in 3D space. Conceptually, one could draw a sphere around

each satellite, in which the radius of the sphere is equal to the range to the receiver.

The receiver must be located at some point on the surface of that sphere. Multiple

satellites create multiple spheres. Ideally, all of the spheres would intersect at a

single position. By determining that point of intersection, the receiver determines

its own position. Unfortunately, errors in measurement ensure that there is never a

single, perfect point of intersection. The receiver gets around this by reinterpreting

the problem as a (possibly overdetermined) linear system (assuming at least four

satellites are in view), and generating a least-squares solution for the receiver’s most

likely position. GPS receivers typically generate solutions at 1 Hz.

Another important piece of hardware is an inertial navigation system. An INS is a

device capable of measuring its own acceleration in six degrees of freedom: translation

and rotation about three perpendicular axes. Accelerometers measure changes in

position, and gyros measure rotation. If an INS has a known starting position and

orientation, then differential equations can be used to to derive an updated position

and orientation at any point later in time. A typical INS might generate updated

position/orientation solutions at 100 Hz or more.

The combination of a GPS receiver and an INS is much greater than the sum of

the parts. The two technologies have very complementary error characteristics. GPS

receivers are less accurate, but the accuracy does not degrade over time. If anything,

the solution tends to get more accurate. INS measurements are extremely accurate,

but have a small bias that accumulates over time as each INS sample is integrated
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to create a new solution. INS errors will continue to grow without bound, but the

magnitude of GPS errors stay relatively constant. INS errors can be characterized as

a constantly increasing bias with very little variance, but GPS errors are much more

random and have very little bias.

A Kalman filter is a very effective means of integrating a time series of noisy

measurements from multiple sources, and produces a single filtered measurement

which minimizes the errors in the system. Kalman filters have been especially useful

in the implementation of integrated GPS/INS navigation systems. The definitive

work on Kalman filtering for GPS/INS systems is [4]. Kalman-filtered GPS/INS

systems are widely available as COTS (commercial, off-the-shelf) components for air,

land, and sea-based navigation systems. Such systems are also the key component

in modern precision strike munitions, including “smart bombs” such as the JDAM

(Joint Direct Attack Munition).

Practically speaking, a Kalman-filtered GPS/INS provides a highly accurate mea-

surement of an aircraft’s position and velocity in 3D space as well as its orientation

(roll, pitch, and yaw), at 10 Hz or more. By integrating the GPS/INS with the

imaging system, one can associate each image with a position and orientation of the

platform. If the range to the ground is known (for example, using a laser rangefinder

or through computations based on a topographic terrain model), then the 3D posi-

tion of each pixel in each image may be estimated as well. Obviously this is of great

assistance in applications such as mapping or weapon targeting, but it also opens up

a wide range of applications which require access to large databases of geolocated

imagery.

GPS/INS systems are widely available as off-the-shelf components, in very com-

pact form factors. The C-MIGITS III is a typical integrated GPS/INS. Figure 1.1 is a

photograph of the unit. It is extremely lightweight, and is approximately 10 cm tall.

Interfacing to the C-MIGITS is simply a matter of sending commands and receiving
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updates via an RS-232 port.

Another technology which is significant to airborne imaging are gimbal systems.

A gimbal provides the ultimate packaging for airborne sensors. A gimbal is a sta-

bilized turret containing one or more cameras. The most advanced gimbals contain

sophisticated optics which are shared between all available cameras, an integrated

GPS/INS and laser rangefinder for image geolocation, and advanced control systems

which allow an operator to move the gimbal with a joystick or instruct it to point at

a particular position in 3D space. Without a gimbal, cameras are generally mounted

on the side of the fuselage or inside the aircraft itself, peering through a hole cut in

the floor of the cabin.

1.3 Applications

The most common applications of remote sensing are related to mapping and

intelligence gathering. Civilian applications might be concerned with environmen-

tal monitoring or mapping large regions of wilderness. Military applications tend

to fall under the category of ISR (intelligence, surveillance, and reconnaissance) mis-

sions. Sophisticated remote sensing systems which are highly integrated with wartime

activities and decision-making are referred to as C4ISR (command, control, commu-

nications, computers, and ISR) systems. C4ISR systems typically involve gimballed

imaging systems on UAV s (unmanned aerial vehicles) with sophisticated realtime

communications and control systems, capable of delivering up-to-the-minute intelli-

gence to battlefield commanders in immediately useful formats. The C4ISR com-

munity is large and active and has a number of journals and conferences devoted to

it.

The following passage from United States Department of Defense’s 1996 Annual

Defense Report demonstrates the importance of C4ISR to the US military’s long-term

planning and evolution:
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FIGURE 1.1: The C-MIGITS III GPS/INS navigation system.
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The focus of surveillance and reconnaissance is directly supporting

warfighter dominance of the battlefield. Battlefield dominance requires:

(1) battlespace awareness to provide warfighters with better, missionfo-

cused and tailored understanding of all force dispositions, capabilities,

and intentions; (2) an advanced C4ISR infrastructure to disseminate bat-

tlespace awareness information rapidly; and (3) precise targeting informa-

tion for precision guided weapons, and other lethal and non-lethal offensive

systems. Improved intelligence, reconnaissance, and surveillance provides

the tools to counter the fog of war, and to enable operations to take place

within the opponent’s decision cycle time. Thus, United States forces can

take and hold the initiative, increase operational tempo, and concentrate

power at times and places of their choosing.

Some of the most interesting remote sensing applications are in the field of pho-

togrammetry. Photogrammetry is the development and application of analysis tech-

niques on images, to make measurements of features present in an image. This is a

very broad definition for a very broad field. Common photogrammetric applications

include the generation of topographic maps of a region from two or more airborne

or satellite images, or measuring the dimensions of a large structure or natural fea-

ture. Photogrammetry predates digital imaging technology by a century or more; the

original photogrammetric techniques were developed using image prints on developed

film. The introduction of digital imaging has allowed the field to flourish in directions

undreamt of by its pioneers.

Another interesting application of remote sensing is multispectral image analysis.

A number of satellites provide high-quality multispectral imagery of large regions of

the Earth’s surface; the images produced by these satellites contain many (six or

more) samples per pixel, taken from different frequencies. Multispectral analysis in-

volves using classification algorithms to identify characteristics of the region that was
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imaged. Certain combinations of pixel values might indicate different types of soil,

the presence of a certain type of natural resource, or the degree of human encroach-

ment on an area. In a sense this is just making assumptions about things based on

color, but the range of bands available to a multispectral sensor provide much more

information than what can be conveyed by visible light. An excellent introduction to

multispectral imaging systems (and remote sensing in general) can be found in [13].



CHAPTER 2: IMAGE REGISTRATION CONCEPTS

Image registration can be defined as an algorithm which maps the pixel space of

one image into that of another. This mapping is based on the presence of common

elements in both images. The two images may differ for any number of reasons; most

commonly, the same scene was imaged by cameras having different positions and

orientations. The images may also have been taken at different times, resulting in

changes in the scene’s illumination or changes in the scene itself. Most likely, all of

these differences are present in varying degrees.

One important special case is when the images were generated by different imaging

systems, for example an infrared camera and a SAR. This is known as multimodal

or multispectral imaging. Different frequencies of radiation provide very different

types of information about the object being imaged. What determines the relative

lightness or darkness of a given object in an image varies with the frequencies a camera

is sensitive to. A hot spring might be the most prominent feature in an airborne IR

image, but would not even be visible in a SAR image. This is an extreme example,

however. In general, many basic structures will be visible in both images, but the

pixel intensities and textures which highlight those structures will be very different.

The registration algorithm presented here is effective for overcoming differences in

camera geometry, changes in a scene over time, and minor differences in illumination

patterns. However, it is not effective for multispectral cases. This is because it is

based on pattern-matching through texture analysis; it assumes that similar patterns

of pixel intensities surround matching areas and objects in both images. It could

probably be modified to work for certain multispectral cases by filtering the input

images prior to registration. For example, passing an image through a high-pass filter

highlights boundaries and diminishes regions having smooth gradients or relatively

constant pixel values. This would enhance the effect of shape on the pattern-matching

functions, while decreasing the effect of shading.



12

In image registration, one of the input images is referred to as the base image,

and the other is called the warp image. The process of registration will result in the

generation of one or more image transforms which will be applied to the warp image;

the base image is unchanged. After registration, an object visible in both images

will be present at the same pixel coordinates in both images. For example, prior to

registration an object is visible in the base image, centered at the pixel coordinate

(x, y). The same object is visible in the warp image at the pixel coordinate (x′, y′),

which is most likely not equal to (x, y). After registration and warping, x′ will equal

x (and y′ will equal y) for all objects common to both images.

Figure 2.1 is an example of a base and warp image pair, prior to image registration.

Figure 2.2 shows the results of sucessful image registration. The bottom image has

been warped into the pixel space of the top image. Nonoverlapping regions of the

warp image are given black pixels, to indicate that the original image did not contain

information about that region. The base image (the image on top) was not modified

during registration.

2.1 Image registration applications

There are a number of interesting applications that require pixel-level image reg-

istration. Some of the most common are terrain modeling, change detection, and

mosaicking.

2.1.1 Terrain modeling

Terrain modeling is the process of generating topographic maps of a region from

sets of images with different camera geometries. By imaging a region from differ-

ent positions at different angles, distortions are introduced in the images which are

the direct result of the scene’s topography. By registering the images together, one

determines the correspondence between each point in one image to another point in
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FIGURE 2.1: An image pair prior to registration.
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FIGURE 2.2: The image pair after registration.
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another image. Using what is known about the camera’s position and orientation at

the time each image was taken (usually from GPS/INS nav data), it is possible to

triangulate 3D positions for each pair of corresponding points. This results in a 3D

point cloud, in which each point has a color associated with it as well as a position.

Using an advanced interpolation technique such as Delaunay triangulation, one can

resample the z-axis values onto a regularly spaced xy grid, resulting in a DEM (dig-

ital elevation model) of the scene. A DEM is essentially a discrete sampling of the

terrain’s topography.

An additional data product that can be produced by this process is an orthorecti-

fied image, sometimes called an “ortho” for short. An ortho is an airborne or satellite

image in which all effects of perspective have been removed; the image resembles an

orthographic projection of the terrain onto a plane that is tangent to the surface of

the Earth. Recall that prior to the generation of the DEM, we had a 3D point cloud

in which each point had an associated color (taken from one or both of the source

pixels in the input images). Creating an ortho from this point cloud is identical to

creating a DEM, except we are resampling the pixel colors to the uniform xy plane

rather than the z values.

2.1.2 Change detection

While terrain modeling requires two or more images of the same scene from differ-

ent perspectives, change detection works best when the input images are from very

similar perspectives. Terrain modeling works by examining the differences in a pair

of images resulting from changing the camera’s position in space; change detection is

concerned with examining the differences in a scene over time. Two or more images

are taken of a scene at different times; the time interval is a function of the types

of changes one is trying to detect. If one is interested in measuring the motion of

glaciers, the images may be separated by years. If one is interested in measuring the
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effects of a missile strike, the images may be separated by seconds. In either case,

the camera should have the same position and orientation in each image, or as close

as can be managed. The images are then registered and subtracted. The result of

the image subtraction is referred to as a difference image, because it identifies things

which have changed over the time interval between the two images. In military appli-

cations, a difference image might highlight tire tracks or disturbed soil where troop

movements had occurred between the times the two images were taken.

2.1.3 Mosaicking

Mosaicking is the process of combining images of overlapping regions into a single

large image mosaic. The regions depicted in the images must overlap, so that image

registration algorithms can align them to each other on a pixel-level basis. This

technique is also useful for aligning arrays of cameras. Some imaging systems are

designed so that multiple cameras with overlapping fields of view will acquire images

simultaneously. Postprocessing software then combines the images into a single large

image, simulating a single camera with a much larger field of view. This requires

knowing each camera’s position and orientation relative to every other camera. This

can be physically measured, however in airborne applications the cameras can easily

become misaligned due to vibration. By registering the overlapping regions of the

cameras’ images to one another, the precise camera calibration parameters can be

directly measured. This is then fed back in to the postprocessing software, which will

use this information to better integrate the images into larger, composite images.

2.2 Cross correlation

Cross correlation is a central function in the image registration algorithm presented

here. The amount of time it takes to register a pair of images is almost entirely

dominated by the efficiency of the implementation of the cross-correlation function.
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The most common description of the cross correlation of two images is as follows:

f(x, y) ◦ g(x, y) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m, n)g∗(x + m, y + n) (2.1)

In this equation, the images are represented as two-dimensional discrete functions

(f and g). The ◦ operator is the cross correlation operator. The g∗ function is the

complex conjugate of g; this distinction is only important if the images are composed

of complex numbers (as is actually the case with SAR imagery).

The output of the cross correlation is a data structure known as a correlation

surface. Each point in the correlation surface represents a translation that could be

applied to the second image. The translation is the position of the point relative

to the center of the correlation surface. The surface’s value at that point represents

the level of correlation that would result if the second image were translated and

compared to the first image.

Figure 2.3 is a typical correlation surface generated from two highly correlated

images. Dark pixels correspond to low levels of correlation; light pixels correspond to

high levels of correlation. The brightest pixel, which is slightly below and to the left of

the center of the correlation surface, corresponds to the highest degree of correlation.

For correlation surfaces generated from an image pair with a significant amount of

common image content (for example, two different images of the same scene), the

surface will resemble a delta function. It will have a single, distinctive, unambiguous

peak. The surface will be smooth and continuous. The surface’s values will sharply

decrease as a function of their distance from the peak. Figure 2.4 provides a more

intuitive visualization of the cross correlation, in the form of a three-dimensional

surface plot.

This particular correlation surface is composed of 2048x2048 elements, the same

dimensions as the input images. The peak value is 143 rows below the center and 2
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columns to the left of the center. This means that if one were to translate the second

input image by 143 rows down and 2 columns to the left, then the second input image

would be perfectly centered with respect to the content of the first input image.

Finding the peak of the correlation surface yields the optimal translation that

should be applied to the second image in order to get the best match with the first

image. Of course, the correspondence between images is almost always going to

be more complicated than a simple translation. The image registration algorithm

uses information from cross correlations in a number of different ways, including

the generation of affine transforms and (if desired) quadratic, cubic, or higher level

transforms as well.

As noted earlier, the amount of processing time required to register an image pair

is dominated by the efficiency of the algorithm used to generate cross correlations.

The equation given above scales very poorly, as a direct implementation would be

roughly O(n2). If the cross correlation is done in the frequency domain instead of the

spatial domain, performance improves to O(n + 3n log n).

Cross correlation is essentially convolution, and one of the basic concepts in signal

processing is that convolution in the spatial (or time) domain is equivalent to multi-

plication in the frequency domain. If F (u, v) and G(u, v) are the Fourier transforms

or f(x, y) and g(x, y), then f(x, y) ◦ g(x, y) can also be derived by taking the inverse

Fourier transform of F (u, v)G∗(u, v). This is vastly more efficient (and scales much

better) than the spatial domain equivalent given before [16, page 192].



19

FIGURE 2.3: A correlation surface displayed as a 2D image.
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FIGURE 2.4: A correlation surface displayed as a 3D surface plot.



CHAPTER 3: THE IMAGE REGISTRATION PIPELINE

The following image registration algorithm is especially well-suited for airborne

imaging applications. It assumes some a priori knowledge of the camera position and

orientation, however it is flexible enough to allow for a small degree of error in this

knowledge. Such errors are inevitable in airborne imaging.

The image registration algorithm presented below can be thought of as a pipeline

— a series of operations in which each stage builds on the knowledge acquired in

previous stages. The raw inputs to the pipeline are a pair of images, presumably

depicting the same scene, and whatever data is required to roughly geocode both

images. On modern imaging systems, this data will typically include the position and

orientation of the aircraft at the time when each image was taken. This information

is generated by the GPS/INS Kalman filter. The output of the image registration

algorithm is a series of image transforms which, when applied one of the images (the

warp image), will warp its pixel space into that of the other image (the base image).

Ideally, after image registration, features in the base image and the transformed warp

image will match up on a subpixel level.

3.1 Initial alignment

The first step in the image registration algorithm is the initial alignment phase.

The inputs to this step are the raw input images, raw nav data (the output of the

GPS/INS Kalman filter), and the geometric relationship between the camera and the

aircraft. The output will be a version of the warp image which is roughly aligned

with the base image, but not on a pixel level. Initial alignment registers the images

using only what is known about the camera geometry; later steps in the pipeline will

use image features to fine-tune the registration. The input images and the nav data

are related via very precise timestamps. The nav data is typically generated on the

order of 10 Hz, so some interpolation may be required.
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3.1.1 Camera geometry

The nav data provides the position and orientation of the aircraft at a point in

time. Of course, what is really needed is the camera’s position and orientation, not

the platform’s. An additional transform will need to be applied which derives the

camera’s position and orientation from the aircraft’s. If a gimbal is being used, this

transform will not be constant; the orientation of the gimbal (and thus, the camera)

relative to the aircraft can be obtained either from the gimbal’s rotor decoder or by

having an INS within the gimbal itself. Once this transform has been applied, we

will have a description of a vector in world coordinates, with its origin at the camera,

pointing along the optical axis of the camera towards the target.

3.1.2 The scene reference point

Now that we have a mathematical description of the camera’s optical axis, we can

use it to determine the SRP (scene reference point) of the image in question. The

SRP of an image is the coordinate in 3D space at the image’s center. This is needed in

order to properly position the two images relative to each other, prior to registration.

Conceptually, the SRP is derived from the camera’s position and orientation by

intersecting the optical axis of the camera with the ground. If the range between

the camera and the ground is known (typically using a laser rangefinder), then this

derivation is trivial. Otherwise, it will be necessary to access a DTED (digital terrain

elevation data) database in order to estimate the point of intersection. A DTED is

simply a 2D array of elevations, sampled over a particular geographic region. The

United States Department of Defense publishes a widely used standard for how DTED

information is to be stored, and what levels of accuracy should be expected from

them [18].

Even the act of intersecting the camera’s optical axis with a DTED surface has a

number of complications. To minimize error, it is generally a good idea to interpolate
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elevations between the samples present in the DTED database. Ideally this would be

done using a spline surface generated from the DTED samples.

3.1.3 Vertical coordinate systems

Another complication in SRP generation is the fact that GPS systems report

elevation differently from DTEDs. GPS receivers derive elevation in terms of HAE

(height above ellipsoid), whereas DTEDs express elevation in terms of MSL (mean

sea level). MSL represents elevation relative to the geoid, which is an equipotential

surface of the Earth’s gravitational field. The geoid is uneven, and known only by

direct measurement and interpolation between measured points. The geoid roughly

corresponds to sea level, hence the name. A large number of geoid models are in

use today; there is no single standard geoid. The models differ from one another in

the forms of measurement and interpolation used, as well as the region of the Earth

covered by the model and the sampling distance.

HAE, on the other hand, represents elevation relative to a smooth, ellipsoidal

approximation of the geoid. An ellipsoid is defined in terms of the lengths of its major

and minor axes, and is concentric with the Earth’s center of gravity. Measurements

in HAE are more standardized than MSL, because while there is no single standard

model of the geoid, there is a standard ellipsoid. This ellipsoid is referred to as the

WGS84 ellipsoid, as it was defined as part of the World Geodetic System standard of

1984.

For purposes of SRP generation, either convert the DTED samples to HAE or

convert the nav data to MSL. Since HAE is the more formally defined and consistent

of the two systems, the author prefers to convert all vertical measurements to WGS84

HAE.
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3.1.4 Horizontal coordinate systems

The final complication in SRP generation is the fact that neither the nav data nor

the DTEDs are defined in terms of a Cartesian coordinate system. Internally, GPS

receivers make all computations in terms of the ECEF (Earth-centered, Earth-fixed)

coordinate system. ECEF is a 3D coordinate system, with units of meters. The

origin of the coordinate system is the center of gravity of the Earth (hence, “Earth-

centered”), and the axes of the coordinate system rotate with the Earth (hence,

“Earth-fixed”). The positive x-axis is defined by a vector from the center of the

Earth to the intersection of the equator and the Prime Meridian (0◦ latitude, 0◦

longitude). The positive z-axis is defined by a vector from the center of the Earth

through the north pole, along the Earth’s axis of rotation. The positive y-axis lies in

the equatorial plane, and forms a right-handed coordinate system with the other two

axes.

However, the output of the GPS receiver is typically in geodetic coordinates (lati-

tude and longitude). ECEF coordinates are generally also available, but are unwieldy

to work with as none of the planes of the ECEF system are aligned with the surface

of the Earth (except for at the equator and the poles). DTED samples are also in

terms of geodetic coordinates; the official DTED standard describes a DTED as a 2D

array of values, in which the two axes represent latitude and longitude with a fixed

spacing between each sample. The spacing is defined in terms of fractions of degrees,

not linear distances.

In order to figuratively shoot a ray from the camera to the surface of the Earth, a

3D Cartesian coordinate system is required. Geodetic coordinates won’t work because

they are in a polar coordinate system. ECEF is theoretically acceptable, however in

practice is difficult to work with due to its disassociation from the Earth’s surface.

A generally acceptable compromise is to use UTM (Universal Transverse Mercator)

coordinates for the x and y axes, and HAE for the z axis.
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UTM is a 2D Cartesian coordinate system which projects the surface of the el-

lipsoid onto a flat surface. The units are meters, and the two axes are referred to

as easting and northing, because those are the directions they point in. UTM allows

us to use linear measurements within the frame of reference of east and north. Of

course, UTM is an approximation with inherent errors. These errors are minimized

by customizing the projection in each of 60 UTM zones; each zone covers an area

spanning 6◦ of longitude, and stretches from pole to pole. Furthermore, each zone

is split between the northern and southern hemispheres. To fully specify a UTM

coordinate, one needs to know the zone, the hemisphere (north or south), and the

easting and northing. For all but the largest images, it is acceptable to use a sin-

gle zone and hemisphere for the entire image, and distinguish between pixels using

nothing but eastings and northings. The errors inherent in the UTM projection are

generally well within the bounds acceptable to most airborne imaging applications,

often on the order of centimeters or millimeters. The official specification for UTM

is [17]. Snyder [15] is generally considered to be the ultimate resource for working

with various geospatial coordinate systems (including UTM).

3.1.5 SRP generation

Once we have transformed the nav data into the camera’s frame of reference, and

transformed the camera geometry into a UTM/HAE-based 3D Cartesian coordinate

system, we are ready to derive an SRP for each image. If we have a direct measure-

ment of range from a laser rangefinder, then SRP generation should be trivial and

highly accurate. Otherwise, it will be necessary to intersect the optical axis of the

camera with the surface of the Earth, as represented in a database of DTEDs. The

DTEDs should also be converted to the UTM/HAE system. For maximum accuracy,

a continuous surface should be interpolated over the samples from the relevant DTED

file, perhaps using 3D spline interpolation.
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3.1.6 GSD

The GSD (ground sample distance) is the distance between adjacent pixels in

physical units of length (typically meters). Knowing the two images’ respective GSDs

tells us the relative scale factor between the images. We can estimate the GSD of the

image based on the distance between the camera and the SRP, as well as the camera’s

FOV (field of view) and image dimensions. Assuming uniform optics, determining

the GSD is simple trigonometry:

GSD =
r tan FOV/2

d
(3.1)

Here, r is the range (the distance between the camera and the SRP), FOV is the

field of view of the camera, and d is the breadth of the digitized image, in pixels. For

cameras which produce square images, d is easy to determine (for a 2048x2048 image,

d is 2048). For cameras with other aspect ratios, d is the axis which the field of view

is defined in terms of. For example, a camera might be designed to generate HDTV-

quality images, and produce 1920x1080 images. The optics are usually designed so

that the generated images have “square pixels”, i.e. the GSD will be the same along

both image axes. By convention, a camera’s specified FOV is generally defined in

terms of the longer of the two axes; d will be 1920. Along the shorter axis, the FOV

will be smaller but the GSD will be the same.

GSD might be further modified by cameras with large depression angles. In this

context, the depression angle is the angle between the camera’s optical axis and a

vector normal to the ellipsoid at the camera’s position. A camera with a depression

angle of zero would be pointing directly at the center of the Earth, below the aircraft.

A camera with a higher depression angle will image targets with a nonzero standoff

range. The standoff range is the distance between the horizontal position (easting and

northing only) of the aircraft and the horizontal position of the target, disregarding
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differences in elevation. The greater the depression angle, the greater the standoff

range, and the greater the effects of perspective in the resultant image. For cameras

at nadir (pointing straight down, having a near-zero depression angle), the images

can be approximated as orthographic projections of the surface of the Earth. For

higher depression angles, the effects of perspective and foreshortening come into play.

Even with uniform optics, each image axis will have a different GSD. One axis will

be consistent with the GSD equation, but the other axis will appear to be scaled as

a function of the depression angle.

For the sake of simplicity of explanation, this thesis avoids dealing with the ef-

fects of off-nadir imaging, and focuses on the simpler case of nadir (or near-nadir)

image acquisition. This will generally be the case in most civilian airborne imaging

applications. Some of the main situations in which off-nadir imaging is required are

military ISR (intelligence, surveillance, and reconnaissance) missions in which there

are regions which are unsafe for the aircraft to fly directly over. In such situations,

large standoff ranges are a safety requirement which override the need for optimal

imaging geometries.

Another situation where higher depression angles are beneficial are stereo map-

ping missions, in which the topography of a region is determined by taking multiple

images from varying perspectives. A higher depression angle exagerrates the geomet-

ric distortion caused by objects in a scene having different heights. If the goal is to

generate a topographic map of an area (or simply to measure the height of specific

objects, such as buildings or trees), then the distortion caused by off-nadir imaging

is actually desirable, and a source of useful information about the scene.

3.1.7 Orientation

The SRP and GSD are two of the three pieces of information needed to perform

initial alignment on a pair of images. The final piece of information is the orientation
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of each image. In this context, the orientation of an image is the angle of its negative

y-axis (i.e., “up” in the image) relative to north. This is simply the sum of the yaw

of the aircraft (an angle relative to north) and the yaw of the camera relative to the

aircraft.

3.1.8 Projection

The final stage of initial alignment is to project the warp image into the base

image’s pixel space based on each image’s SRP, GSD, and orientation. Note that at

this point, no action has yet been taken based on analysis of either image’s content.

The purpose of initial alignment is to make a preliminary best estimate as to how to

register the images, which will set the stage for later fine-tuning of the registration

using various image processing techniques.

At this point, we should have reasonable estimates of the data required in order

to geocode both images. An image is geolocated if there is some known association

between the scene in the image and a geographic position. For example, an image

analyst might annotate an image by designating features in a scene with known

positions. A specific point in an image with a known geographic position is referred

to as a tiepoint ; an image is geolocated if it has one or more tiepoints. Geocoding an

image is a step beyond geolocation. Once an image has been geocoded, it is possible

to determine the geographic position of every pixel, not just the pixels with associated

tiepoints.

An image’s geocoding is most commonly represented as an affine transform. The

transform is a matrix which converts pixel coordinates in an image to some sort of

projected coordinate system (typically UTM). In the case of UTM, the entire image

would be associated with a single UTM zone and hemisphere, and the geocoding ma-

trix would generate easting and northing values for each pixel. Applying a geocoding

matrix to derive easting and northing from pixel coordinates is simply an affine trans-
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form. For example, to convert pixel (x, y) to the UTM coordinate (E, N), perform

the following matrix multiplication:


dE
dx

dE
dy

TE

dN
dx

dN
dy

TN

0 0 1




x

y

1

 =


E

N

1

 (3.2)

The geocoding matrix G is defined in terms of dE
dx

and dE
dy

, the rates of change of easting

with respect to the two image axes; dN
dx

and dN
dy

, the rates of change of northing; and

TE and TN , the easting and northing translation factors. Pixel coordinate (0, 0) in

the image has an easting and northing of (TE, TN).

Another useful matrix is G−1, the inverse geocoding matrix. It can be used to de-

termine the pixel coordinate of a given geographic coordinate. The inverse geocoding

matrix is an invaluable tool in many geospatial image processing algorithms. After

deriving the warp image’s G−1 and the base image’s G, we will be able to use an image

processing operation known as a geoblit to project the warp image’s pixel contents

into the base image’s geographic pixel space.

In the following equations, let the width and height of the image in pixels be

denoted by W and H, respectively. For completeness, do not assume that the GSD

is the same along both axes. Use GSDx and GSDy to refer to the GSD along the

two axes. GSD shall always be positive. SRPE and SRPN refer to the easting and

northing of the SRP. Let α refer to the angle of orientation of the image with respect

to north. These equations assume that the origin of the pixel coordinate system is

in the upper-left corner of the image, and that the x-axis increases to the right and

the y-axis increases when moving downwards in the image. This is the standard

coordinate system used in most image processing literature and software. When the

negative y-axis points directly north, α is zero. Otherwise, α increases with clockwise

rotation of the negative y-axis with respect to north. In other words, when α equals
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0◦, “up” in the image is north and “right” in the image is east. When α equals 90◦,

“up” is east and “right” is south. When α equals 180◦, “up” is south and “right” is

west. Finally, when α equals 270◦, “up” is west and “right” is north.

dE

dx
= GSDx cos α (3.3)

dE

dy
= −GSDy sin α (3.4)

dN

dx
= −GSDx cos α (3.5)

dN

dy
= −GSDy sin α (3.6)

TE = SRPE −
W

2

dE

dx
− H

2

dE

dy
(3.7)

TN = SRPN − W

2

dN

dx
− H

2

dN

dy
(3.8)

Use these equations to derive G for each image. Then, invert the warp image’s

G to obtain its G−1. Now that we have the geocoding matrix G for the base image

and G−1 for the warp image, we are ready to geoblit the contents of the warp image

into the base image’s geographic pixel space. This will complete the initial alignment

stage of the registration pipeline.

A bitblt (bit block transfer), sometimes known as a blit, is a standard image

processing operation in which some portion of an image is copied into another image.

Typical the programmer identifies a source image, a rectangle within the source image,

a destination image, and a point of origin. The pixels within the rectangle are cropped

out of the source image and copied into the destination image. The point of origin is

where the upper-left corner of the rectangle is mapped to in the destination image;

essentially it applies a translation to the cropped rectangle while its pixels are being

copied from the source to the destination.

A geoblit also copies pixels from a source to a destination image, but it uses the

geocoding matrices of the two images to determine where to copy each pixel to in
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the destination. A pixel from the source image will be copied to the same geographic

location within the destination image. It is always possible, of course, that that

location does not lie within the bounds of the destination.

To complete initial alignment, we need to project the warp image into the base

image’s pixel space. First, create an image having the same dimensions and geocoding

matrix as the base image. Initialize the new image’s pixels to zero. Iterate through

every pixel in the new image. For each pixel, use the new image’s geocoding matrix

(which is identical to that of the base image) to determine the UTM coordinates of

that pixel. Use the warp image’s inverse geocoding matrix to determine the location

of the corresponding pixel in the warp image. Copy the pixel from the warp image

to the new image, interpolating when necessary. After this process is complete, the

new image will cover the exact same region of terrain as the base image, but it will

contain the pixel data from the warp image. Pixels in the new image which were not

present in the warp image will still have their initial value of zero (black).

The inputs to the initial alignment stage were the two original images and their

associated nav data. The outputs (and thus, inputs to the next stage of registration)

are the original base image, the projected warp image created by the geoblit operation,

and the geocoding matrix that is now common to both images. All references to the

warp image in the description of the next stage of registration (correlated alignment)

refer to the projected warp image, not the original, unmodified warp image.

3.1.9 Initial alignment without nav data

Nearly all professional airborne imaging applications incorporate a Kalman-filtered

GPS/INS system during image acquisition. However, it is sometimes necessary to reg-

ister images for which there is no nav data. It will be clear to the user from visual

inspection that a pair of images are different depictions of the same scene, but for

whatever reason nav data is not available.
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In this case, another approach to initial alignment is required. Rather than using

the nav data to automatically scale, orient, and center the images, an interactive

technique is required. The user can simply manually select three or more features

which are common to both images, taking note of the pixel coordinates of the features

in each image. The set pixel coordinates must be noncollinear for this technique to

work.

The selected pixel coordinates of common features from both images can then be

used to generate a least-squares solution for an optimal affine transform matrix. This

is very similar to the technique used for correlated alignment; see the next section for

detailed description of the actual mathematics involved. The initial alignment stage

can be completed simply by applying this transform to the warp image.

It should be noted that if this technique is used, it is still almost always advan-

tageous to go through the correlated alignment process, even if correlated alignment

only involves creating another affine transform matrix. This is because there will no

doubt be some user error in selecting the correct pixel for a given feature in both

images. Furthermore, if the scene contains a lot of relief (fluctuations in elevation),

then there is a high probability that using a small number of features for registration

(3–5 is typical for interactive applications) will result in a suboptimal transform ma-

trix. Performing correlated alignment after manual initial alignment will help iron

out errors in the user’s pixel selections, as well as average out errors due to image

distortions caused by the scene’s topography.

3.2 Correlated alignment

The initial alignment stage is a first approximation of the transforms needed to

register the warp image to the base image. A fundamental difference between initial

alignment and correlated alignment is, initial alignment uses what is known about

the camera geometry and the terrain topography to register the images. It does not
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employ any sort of pattern-matching using the image pixel data. Correlated alignment

refines this initial approximation via analysis of the pixel data itself.

The inputs to correlated alignment are the outputs from initial alignment: the

untouched base image, and the modified warp image. The warp image should be cen-

tered, scaled, rotated and cropped to a reasonable approximation of the base image’s

geometry. The goal of correlated alignment is to compute, using image processing

techniques, an optimal global transform that will best align the modified warp image

with the base image. Essentially, this is a fine-tuning of the approximate registration

produced in the initial alignment phase.

After correlated alignment, the differences between the base and warp images due

to global parameters (such as camera geometry) should be minimized. Correlated

alignment irons out the image alignment errors due to inaccurate nav data, inaccurate

range estimates, vibration of imaging platform, errors in the timestamps given to

images, and a multitude of other error sources inherent in modern airborne imaging

systems.

The correlated alignment algorithm is as follows. A pair of images, I and I ′,

contain slightly different views of the same scene. Many features that are visible in

I are also visible in I ′. Say that some number n points of correspondence have been

identified between the two images. “Points of correspondence” are here defined as

a pair of image coordinates, (x, y) from I and (x′, y′) from I ′, which designate the

locations of some object or feature that is visible in both images.

First, assume that there is some ideal linear transform that maps all such points

from I to their corresponding points in I ′:


ax bx cx

by ay cy

0 0 1




x

y

1

 =


x′

y′

1

 (3.9)
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In the transform matrix, ax and ay are the x and y scale factors, bx and by are the

x and y shear factors, and cx and cy are the x and y translation factors. The matrix

multiplication can be restated in the form of a pair of linear equations:

axx + bxy + cx = x′

ayy + byy + cy = y′
(3.10)

To determine an optimal values for ax, bx, and cx, first list the algebraic expressions

for all known x′:

axx0 + bxy0 + cx = x′
0

axx1 + bxy1 + cx = x′
1

axx2 + bxy2 + cx = x′
2

...

axxn + bxyn + cx = x′
n

(3.11)

Observe that this is equivalent to the following matrix expression:



x0 y0 1

x1 y1 1

x2 y2 1

...

xn yn 1
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 =
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x′
0

x′
1

x′
2

...

x′
n


(3.12)

The expression is conveniently in the form of Ax = b, in which the unknowns are

collected within the x matrix. Using the pseudoinverse to find a least-squares solution

to the system and evaluating A−1b will yield the optimal values for the x matrix, which

contains ax, bx, and cx. Repeating the process for the y coordinates will likewise yield

optimal values for ay, by, and cy.

The remaining question is, how are the points of correspondence obtained in the

first place? One possibility is to have a human image analyst identify them explicitly,
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by selecting the corresponding points from a pair of displayed images. There must

be at least three points (or four, if a least-squares solution is desired), but there is no

maximum number of points. The more points are selected, the greater the accuracy

of the least-squares solution.

If the images do not have any geolocation information associated with them, then

initial alignment (the previous stage in the registration algorithm) will be performed

using this very technique. The user selects three or more noncollinear points of

correspondence in the two images. Then, equation 3.12 is used to generate an optimal

affine transform which maps the selected pixel coordinates in the warp image to the

corresponding pixel coordinates in the base image. This transform matrix is then

applied to the warp image. This is a suboptimal technique because it requires human

intervention; it is much more efficient to perform initial alignment automatically

using nav data to geolocate the images and generate the initial transform for the

warp image. However, in situations where nav data is unavailable, it is the only

alternative.

In correlated alignment, an automated system is used to locate points of corre-

spondence. The same algorithm is used for correlated alignment regardless of which

algorithm was used for initial alignment. Assuming that the two images are some-

what closely aligned already, subdivide the warp image into a number of smaller tiles.

For example, chop up a 2048x2048 image into a 16x16 array of 128x128 pixel tiles.

For each tile, extract the corresponding tile from the base image, and generate a cor-

relation surface for the pair of tiles. Finding the peak of the correlation surface will

yield an optimal translation between the two tiles which will best match them up.

Determine the pixel coordinates of the center of each tile in terms of the warp image’s

pixel space: in the example given, the upper-left tile’s center pixel would be (64, 64);

the tile to the right would be (192, 64); the tile below would be (64, 192), and so on.

These coordinates are collectively (x0, y0) through (xn, yn) in equation 3.12. Adding
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the translations from the correlation surfaces, (∆x0, ∆y0) through (∆xn, ∆yn), yields

the corresponding points in the base image, (x′
0, y

′
0) through (x′

n, y
′
n).

The only problem with the automated method is that care must be taken to filter

out correlation surfaces which do not contain useful information. There are a number

of image, sensor, or scene-dependent properties which might cause some of the tiles to

not sufficiently correlate, or to have high degrees of correlation in unexpected areas. If

these correlations are not filtered out, then any translations derived from the resultant

surfaces will simply add noise and error to the final least squares solution. There are

a number of indicators of poor correlations. Some commonly used indicators include:

• Correlation surfaces in which the peak value occurs on the leftmost or rightmost

column, or the top or bottom row, are almost certainly invalid. In some cases,

it may be worthwhile to discard correlations in which the peak is outside the

central quadrant of the surface. The downside to this is the fact that restricting

the valid area of the correlation surface also limits the maximum translation

that can be detected.

• Count the number of black (zero-valued) pixels in the tile from the warp image

that was used as an input to the correlation surface. Black pixels occur in areas

where the original warp image (prior to initial alignment) and the base image

don’t have any overlap. The higher the percentage of black pixels in the tile, the

less real information was used to generate the correlation surface. Discard any

correlation surface in which this black pixel percentage is above some threshold.

• Subtract the minimum value in the correlation surface from every element in

the correlation surface. This will remove any DC bias present due to the input

images’ spectrum. Then, compute the ratio of the peak value to the RMS (root

mean square) of the entire surface. If the ratio is below some predetermined

threshold, assume the correlation surface is noise and discard it.
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Many other indicators can be used as well. Unfortunately, the specific set of indicators

used to filter out bad correlations will be specific to the types of sensors used and the

types of scenes being imaged. An effective set of indicators for a particular SAR might

not work as well for an infrared imaging system. Some experimentation will likely be

necessary to determine an ideal set of indicators for a particular application. In the

implementation described in the next chapter, the only indicators used were detecting

peaks in the first or last row or column, and rejecting any correlation surface in which

the input tile from the warp image had more than 5% black pixels. In the author’s

experience, examining the peak:RMS ratio is absolutely essential when working with

SAR images; however, for the optical dataset used in this work, it was just not useful.

It should be noted that the correlated alignment algorithm is not limited to gen-

erating affine transforms. It can just as easily be used to generate quadratic or cubic

transforms, or any order desired. For example, in the quadratic case, the equations

which map x to x′ would look like this:

axx
2
0 + bxx0 + cxx0y0 + dxy0 + exy

2
0 + fx = x′

0

axx
2
1 + bxx1 + cxx1y1 + dxy1 + exy

2
1 + fx = x′

1

axx
2
2 + bxx2 + cxx2y2 + dxy2 + exy

2
2 + fx = x′

2

...

axx
2
n + bxxn + cxxnyn + dxyn + exy

2
n + fx = x′

n

(3.13)
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The corresponding matrix equation would be constructed like so:



x2
0 x0 x0y0 y0 y2

0 1

x2
1 x1 x1y1 y1 y2

1 1

x2
2 x2 x2y2 y2 y2

2 1

...

x2
0 xn xnyn yn y2

n 1





ax

bx

cx

dx

ex

fx



=



x′
0

x′
1

x′
2

...

x′
n


(3.14)

There are more coefficients to solve for, however the basic algorithm is identical to

the affine case. In general, higher-order transforms are rarely necessary for airborne

images. They are much more common in the case of satellite images, due to the

curvature of the Earth, as well as the nature of the sensors themselves. Many satellite

imaging systems in use today are pushbroom scanners, in which the sensor is a 1D

array of detector elements. The sensor images one row of pixels at a time, which

must be integrated into a complete image in postprocessing. This may necessitate

the usage of higher order transforms, in order to remove geometric artifacts of the

pushbroom imaging process.



CHAPTER 4: ANALYSIS

The algorithms described in chapter 3 were implemented and tested. The test data

was primarily narrow field of view (NFOV) optical images of desert scenes, however

some urban scenes were used as well. In addition, several wide field of view (WFOV)

image pairs were tested, as well as several color images. In all cases the software was

extremely effective in registering the images to a subpixel level. The software itself is

described in appendix 4.4, and the source code is included in appendix 4.4.

4.1 Algorithms used

There was no nav data available for any of the images, therefore the alternative

method of initial alignment was used. Three noncollinear control points were selected

in the base image for each pair, and the pixel coordinates were found for the cor-

responding points in the warp image. This resulted in very good initial alignment

for all image pairs. However, the initial alignment was by no means anywhere near

optimal, as the correlated alignment stage always generated transforms which vastly

improved the quality of the registration.

For correlated alignment, the images were divided up into 256x256 pixel tiles,

however the tiles overlapped with their neighbors by 50%. So, starting in the upper

left corner of the images, the first tiles were centered at pixel coordinate (128, 128),

and contained pixels from rows 0 through 255, and columns 0 through 255. The next

pair of tiles were centered at pixel coordinate (256, 256), and contained pixels from

rows 0 through 255, and columns 128 through 513. Having 50% overlap between

adjacent tiles allowed a larger correlation window to be used (which provides a larger

search area and a higher resistance to noise), while providing up to four times as many

points of correspondence as there would have been had the tiles not overlapped.
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4.2 Evaluation techniques

4.2.1 Difference images

Several techniques were used to evaluate the output of the registration algorithm.

Difference images were created after initial alignment and after correlated alignment

in order to quantify the quality of the registration, and to determine the degree

to which correlated alignment improved upon initial alignment. A difference image

is generated simply by subtracting one image’s pixel values from the corresponding

pixels in the other image. All images were 8-bit grayscale, so the minimum pixel value

was 0 and the maximum was 255. This means that the minimum possible value for a

pixel in the difference image is -255 (minimum minus maximum), and the maximum

possible value was 255 (maximum minus minimum).

Prior to image subtraction, each image’s pixels were converted to floating point

and normalized; all pixels were divided by 255 to change the range of possible pixel

values to 0.0 to 1.0. After subtraction, the difference image’s range was -1.0 to 1.0.

The equation

y = (
x

2
+ 0.5) ∗ 255 (4.1)

was then used to convert the difference image’s pixels back to a range of 0 to 255.

If a pixel’s value was the same in the warp image as it was in the base image, then

the corresponding pixel in the difference image would have a value of 127. If a pixel’s

value was different between the base and warp images, then the corresponding pixel

in the difference image would be some amount above or below 127. If the images were

perfectly registered, and there were no changes in the scene between the two images,

then the ideal difference image would be perfectly gray and featureless. Every pixel

would be 127. Of course, this never occurs in practice, but it’s possible to measure

how close a given difference image is to this ideal.

Figure 4.1 shows a pair of images prior to registration. Note that the aircraft was
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apparently flying in opposite directions when the two images were taken. Figure 4.2

shows the final registered image pair. Once again, the base image is on top and is

unaltered by the process. The warp image is on the bottom, with black pixels assigned

to nonoverlapping regions.

Figure 4.3 is the difference image that was generated using the output of the initial

alignment stage. Recall that regions of the difference image which are grey, flat, and

featureless imply good registration. If the registration is off by only a few pixels, then

the difference image takes on the appearance of an out-of-focus, ghostly reflection

of the original scene. Around the control points used to generate the transform,

the registration is of very high quality. Further away from the control points, the

registration rapidly deteriorates.

Figure 4.4 is the final difference image, generated after the correlated alignment

stage. It shows a significant improvement over the previous difference image. The

difference image has lost its out-of-focus appearance, and appears to have snapped

into alignment across the entire image. At this point, any elements of the difference

image which deviate from the uniform gray-value of 127 are due to changes in the

scene rather than errors in registration. Imaging at different times of day can produce

such deviations, as the shadows are cast in different directions in the two images.

Variations in optical focus or aircraft altitude can also introduce minor changes in

the difference image as well. However, these types of artifacts tend to produce very

subtle deviations in the difference image which are globally visible throughout the

image.

In general, the most visible (as well as the most localized) fluctuations remaining

in the difference image after correlated alignment are due to one of two things, each

of which leads to a useful application of image registration. The first cause is actual

change in the scene, either from human activity or natural events. Algorithms which

try and isolate these fluctuations in difference images are known as change detection
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algorithms. The second cause is from changing elevation in the scene. The effects

of varying elevation in a scene are amplified when the two images are taken from

different positions; the change in perspective causes the scene to look different in the

two images, which results in deviations in the difference image. The registered images

can then be passed on to algorithms which further refine the registration, and in the

process measure the topography of the terrain [9].

Both of these applications have initial and correlated alignment as prerequisites,

but their algorithms diverge at that point and go off in very different directions.

Mission planning figures prominently in both cases. In the case of change detection,

the imaging geometry is set up in such a way that the imaging platform has a position

and orientation on the second flight that is nearly identical to the that of first flight.

This minimizes changes due to terrain geometry and ensures that the most notable

fluctuations in the difference image are indeed due to changes in the scene. Mapping

missions, on the other hand, are set up so that each image attempts to capture the

scene from as widely varying imaging geometries as possible. This is intended to

emphasize the geometric distortion in the image pairs due to changing elevation.

4.2.2 Control point migration

Difference images provide an excellent visual representation of the quality of the

registration (as well as a useful input to other algorithms), however it can be difficult

to quantify the quality metric that they represent. For more formal analysis, moni-

toring control point migration can be very useful technique. Control point migration

is simply the movement of the control points (the points of correspondence identified

during correlated alignment) during the final affine transform.

Each control point has three sets of pixel coordinates associated with it. The first

coordinate is the center of the control point’s correlation window in the base image.

For example, in the scheme described in section 4.1, the images were chopped up
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FIGURE 4.1: Another image pair prior to registration.
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FIGURE 4.2: The image pair after registration.
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FIGURE 4.3: The difference image after initial alignment.
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FIGURE 4.4: The difference image after correlated alignment.
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into 256x256 pixel tiles which overlapped by 50% with neighboring tiles. The centers

of these tiles (or correlation windows) occurred at (128, 128), (256, 128), (384, 128),

and so on in the base image. These centers are the first coordinate associated with a

control point.

The second coordinate is the corresponding point found in the warp image. Recall

that each tile in the base image was cross correlated with the corresponding tile in

the warp image. The result of the cross correlation is a translation that would center

the warp tile with respect to the base tile. Another way of thinking about this is,

the result of the cross correlation is the identification of a specific pixel in the warp

tile that maps to the center pixel of the base tile. The coordinate of this pixel in the

warp image is the second coordinate associated with a control point.

After correlated alignment, an optimal affine transform is computed and applied

to the warp image. By applying this transform to coordinates just described (the

control points in the warp image), we can see how closely each control point in the

warp image gets mapped to its corresponding control point in the base image. We can

measure the Cartesian distance between each control point in the warp image to its

matching point in the base image, then measure that distance again after applying the

final affine transform. If the registration algorithm is working correctly, that distance

should noticeably decrease after the transform.

The distances are also useful as predictors for the effectiveness of change detection

algorithms or terrain modeling algorithms. These algorithms generally require sub-

pixel registration in order to work properly. If the final transform fails to bring most

of the warp control points to within a pixel of their corresponding base control points,

then the algorithms which operate on the registered images will be less reliable.

Table 4.1 contains a selection of the control point migration statistics for the image

pair shown in this chapter. The first three columns correspond to the set of three pixel

coordinates just described: “base” is the center pixel of a given base image tile, “warp”
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base warp warped dist0 dist1
(128, 128) (150, 123) (129, 128) 22.6 1.0
(256, 128) (276, 123) (257, 128) 20.6 1.0
(384, 128) (402, 125) (384, 129) 18.2 1.0
(512, 128) (528, 125) (512, 129) 16.3 1.0
(640, 128) (654, 126) (640, 129) 14.1 1.0
(768, 128) (781, 126) (768, 129) 13.2 1.0
(896, 128) (907, 126) (896, 128) 11.2 0.0
(1024, 128) (1033, 126) (1023, 127) 9.2 1.4
(1152, 128) (1159, 125) (1151, 126) 7.6 2.2
(1280, 128) (1286, 125) (1280, 125) 6.7 3.0
(1408, 128) (1412, 126) (1407, 126) 4.5 2.2
(1536, 128) (1538, 127) (1535, 126) 2.2 2.2
(1664, 128) (1664, 128) (1662, 127) 0.0 2.2
(1792, 128) (1791, 127) (1791, 125) 1.4 3.2
(128, 256) (149, 252) (129, 257) 21.4 1.4
(256, 256) (275, 252) (256, 257) 19.4 1.0
(384, 256) (401, 253) (384, 257) 17.3 1.0
(512, 256) (527, 253) (512, 257) 15.3 1.0
(512, 256) (527, 253) (512, 257) 15.3 1.0

TABLE 4.1: A portion of the control point migration table.

is the corresponding pixel in the warp image, and “warped” is the warp coordinate’s

position after the final transform has been applied. The next two columns are the

distance between “base” and “warp”, and the distance between “base” and “warped”,

respectively. It should be noted that although “warped” coordinates are listed as

having integral values for the sake of brevity, in reality they are real-valued. The

image registration algorithm described here operates at a sub-pixel level of precision.

It nearly always maps pixels to fractional coordinates, necessitating interpolation

when the transforms (in all stages) are applied to the warp image.

4.3 Additional imagery

This section contains additional examples of image registration. Three image pairs

are presented. For each image pair, the following figures and tables are provided:
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base warp warped dist0 dist1
(256, 256) (257, 257) (255, 254) 1.4 2.2
(384, 256) (385, 256) (384, 254) 1.0 2.0
(512, 256) (512, 256) (511, 256) 0.0 1.0
(640, 256) (640, 254) (640, 255) 2.0 1.0
(768, 256) (767, 253) (768, 255) 3.2 1.0
(896, 256) (894, 253) (895, 257) 3.6 1.4
(256, 384) (257, 386) (255, 383) 2.2 1.4
(384, 384) (385, 385) (384, 383) 1.4 1.0
(512, 384) (512, 384) (511, 383) 0.0 1.4
(640, 384) (640, 383) (640, 384) 1.0 0.0
(768, 384) (767, 382) (767, 384) 2.2 1.0
(896, 384) (894, 381) (895, 384) 3.6 1.0
(256, 512) (257, 515) (255, 512) 3.2 1.0
(384, 512) (385, 514) (383, 512) 2.2 1.0
(512, 512) (513, 512) (512, 511) 1.0 1.0
(640, 512) (640, 511) (639, 512) 1.0 1.0
(768, 512) (768, 510) (768, 512) 2.0 0.0
(896, 512) (895, 509) (896, 512) 3.2 0.0
(896, 512) (895, 509) (896, 512) 3.2 0.0

TABLE 4.2: A portion of the control point migration table from pair 1.

• A comparison of the unmodified base and warp images.

• A comparison of the base image and the registered warp image.

• A difference image generated after the initial alignment stage.

• A difference image generated after the correlated alignment stage.

• A selection from the control point migration table generated while registering

the image pair.

The control point migration table is not printed in its entirety, as it would require

15–20 pages to print the complete table for a single image pair. The samples in the

table are representative of the entire dataset, however.
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FIGURE 4.5: Image pair 1, prior to registration.
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FIGURE 4.6: Image pair 1, after registration.
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FIGURE 4.7: The difference image from pair 1, after initial alignment.
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FIGURE 4.8: The difference image from pair 1, after correlated alignment.
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FIGURE 4.9: Image pair 2, prior to registration.
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FIGURE 4.10: Image pair 2, after registration.
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FIGURE 4.11: The difference image from pair 2, after initial alignment.
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FIGURE 4.12: The difference image from pair 2, after correlated alignment.
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base warp warped dist0 dist1
(128, 256) (116, 268) (128, 255) 17.0 1.0
(256, 256) (245, 267) (255, 256) 15.6 1.0
(384, 256) (375, 265) (384, 255) 12.7 1.0
(512, 256) (505, 264) (512, 256) 10.6 0.0
(640, 256) (634, 262) (639, 255) 8.5 1.4
(768, 256) (764, 260) (768, 255) 5.7 1.0
(896, 256) (894, 259) (896, 255) 3.6 1.0
(1024, 256) (1023, 257) (1024, 255) 1.4 1.0
(1152, 256) (1152, 256) (1151, 256) 0.0 1.0
(1280, 256) (1282, 254) (1280, 255) 2.8 1.0
(1408, 256) (1411, 253) (1407, 256) 4.2 1.0
(1536, 256) (1541, 251) (1535, 255) 7.1 1.4
(1664, 256) (1671, 249) (1664, 255) 9.9 1.0
(1792, 256) (1800, 248) (1791, 255) 11.3 1.4
(128, 384) (117, 396) (128, 384) 16.3 0.0
(256, 384) (246, 395) (255, 384) 14.9 1.0
(384, 384) (376, 393) (383, 384) 12.0 1.0
(512, 384) (506, 391) (512, 383) 9.2 1.0
(512, 384) (506, 391) (512, 383) 9.2 1.0

TABLE 4.3: A portion of the control point migration table from pair 2.
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FIGURE 4.13: Image pair 3, prior to registration.
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FIGURE 4.14: Image pair 3, after registration.
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FIGURE 4.15: The difference image from pair 3, after initial alignment.
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FIGURE 4.16: The difference image from pair 3, after correlated alignment.
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base warp warped dist0 dist1
(128, 128) (126, 132) (128, 128) 4.5 0.0
(256, 128) (253, 131) (255, 128) 4.2 1.0
(384, 128) (381, 131) (383, 128) 4.2 1.0
(512, 128) (509, 130) (511, 127) 3.6 1.4
(640, 128) (637, 130) (639, 128) 3.6 1.0
(768, 128) (765, 129) (767, 127) 3.2 1.4
(896, 128) (893, 129) (895, 127) 3.2 1.4
(128, 256) (127, 259) (129, 256) 3.2 1.0
(256, 256) (254, 259) (256, 256) 3.6 0.0
(384, 256) (382, 258) (384, 255) 2.8 1.0
(512, 256) (510, 258) (512, 256) 2.8 0.0
(640, 256) (638, 257) (640, 255) 2.2 1.0
(768, 256) (766, 257) (767, 255) 2.2 1.4
(896, 256) (894, 256) (895, 255) 2.0 1.4
(128, 384) (127, 386) (128, 383) 2.2 1.0
(256, 384) (255, 386) (256, 384) 2.2 0.0
(384, 384) (382, 386) (383, 384) 2.8 1.0
(512, 384) (510, 385) (511, 383) 2.2 1.4
(512, 384) (510, 385) (511, 383) 2.2 1.4

TABLE 4.4: A portion of the control point migration table from pair 3.
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4.4 Conclusion

The image registration algorithm presented here has, in practice, shown itself to

be very robust and adaptable to widely varying sensors and scenes. The remaining

appendices present a detailed description of the implementation, as well as the source

code itself.
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APPENDIX A: IMPLEMENTATION DETAILS

The software was written in the Python programming language, using several

third-party libraries for scientific computing and image processing. Python is a very

high-level, object-oriented interpreted language. It is most commonly used for text

processing, scripting, and web development, however it is a general purpose language

that is easily adaptable to many other domains. Python is generally placed into the

same category of languages as Perl, Tcl, and Ruby.

The major impediment to using interpreted languages for HPC (high-performance

computing) applications, such as image processing, has been performance. The core

of most HPC applications are operations on thousands (or millions, or billions) of

numeric datatypes which are directly implemented in the hardware of most processors.

Such datatypes include 8-bit, 16-bit, and 32-bit integers, both signed and unsigned.

IEEE 754 floating-point values (single and double-precision) are also heavily used.

When using a compiled language such as C or Fortran, numeric operations in

the source code are directly translated to machine operations on the CPU’s native

datatypes in the object code. In interpreted languages such as Python, however,

there is an additional layer of abstraction. An interpreted language will typically

have a high-level datatype as a wrapper around each native datatype. Each numeric

operation incurs one or more function calls as overhead, as the interpreter transitions

from the high-level wrapper to the native datatype and back again. At the very least,

accessing variables in interpreted languages requires the interpreter to search through

a dynamic symbol table to locate a pointer to an instance of a native datatype in

memory.

For example, the following C function converts an array of values from degrees to

radians:

void deg2rad(double* vals, int n)

{
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int i;

for(i = 0; i < n; i++)

vals[i] *= M_PI / 180;

}

The code is extremely efficient; it uses simple pointer arithmetic to iterate through

the array, and performs in-place multiplication on its contents. Furthermore, any de-

cent compiler will evaluate M_PI / 180 once at compile time, rather than generating

code that evaluates the expression at run time, every time around the loop.

Contrast this with the equivalent Python code:

function deg2rad(vals):

for i in xrange(len(vals)):

vals[i] *= math.pi / 180

On the surface, the code looks very similar, however it is not nearly as efficient.

Each time around the loop, an element is extracted from the list vals. Lists are

the Python equivalent to arrays, but the elements in a given list do not have to all

be the same datatype. Therefore, after indexing into the list, the interpreter has to

determine the type of that element. It then has to determine the meaning of that

type when used as an operand to *=, with a floating-point value as the other operand.

If the operation is legal, it dereferences a pointer to obtain the current value of the list

element, computes the result of the expression, and stores the result back in memory.

The solution to this problem is to introduce a datatype in the interpreted language

which encapsulates an array in the native environment. Furthermore, the standard

operators and numeric functions are overloaded so that they can operate on these

arrays in addition to scalar values. This would allow the code to be rewritten like so:

function deg2rad(vals):

vals *= math.pi / 180

There is still more overhead than the C version, but the overhead is minimized

and fixed; it does not increase with the size of the array. The transition between the



69

interpreter’s level of abstraction and native computations occurs once for the entire

array, rather than once for each element of the array. In fact, the result may be faster

than the C version, because the interpreter’s implementation of *= may utilize SIMD

CPU instructions such as the Pentium IV’s SSE3 instruction set or the PowerPC’s

Altivec instruction set. These CPU instructions can perform a single arithmetic oper-

ation on multiple inputs simultaneously, rather than iterating through each input and

performing the operation sequentially. Some C compilers are capable of recognizing

optimization opportunities and generating SIMD-based code automatically, but this

feature is almost always turned off by default and inconsistent when it is enabled.

This technique of introducing an efficient array datatype and parallelizing common

numeric operations is quite popular. MATLAB is arguably the single most popular

interpreted language for science and engineering research and simulations, and it uses

such parallelization extensively. MATLAB’s core datatype is a matrix; a scalar value

is actually represented as a 1x1 matrix. All of the standard operators and nearly

all of the core math functions can operate on matrices just as easily as scalars. The

mark of a neophyte MATLAB programmer is writing code that iterates through an

array, performing the same operation on each element, rather than performing the

operation once on the entire array. In MATLAB jargon, eliminating iteration in favor

of array operations is known as “vectorization”.

This aspect of MATLAB’s language design stems from the fact that it was origi-

nally written as an interactive teaching tool, to introduce students at the University of

New Mexico to LINPACK and EISPACK. LINPACK was a widely used public domain

Fortran library which contained a number of linear algebra functions. EISPACK was

another Fortran library which contained functions to compute the eigenvalues and

eigenvectors of a number of different matrix types. Both packages have since been

subsumed into the LAPACK library, which is very widely used to this day.

MATLAB allows students to interactively create matrices and call functions in
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LINPACK and EISPACK without having to do any Fortran programming. Using

matrices rather than scalars as the core datatype was a natural design decision given

the purpose of the application (an interactive teaching tool, rather than a general-

purpose programming language). However, this design decision had a number of

positive repercussions. It paved the way for high-performance computing in high-

level, interpreted, dynamic languages. It taught programmers to intuitively think in

terms of parallelized operations on data. Finally, it provided a means of expressing

complex algorithms on large datasets in a very clear, concise manner with a minimum

of extraneous syntax and boilerplate code.

The lessons learned from MATLAB are being applied to other interpreted lan-

guages. There are a number of extension libraries which provide this functionality in

Python. The array package in the Python Standard Library offers some of the re-

quired functionality, but not enough to be generally useful. Numerical Python (also

known as Numeric or NumPy) is probably the most popular add-on, and it effec-

tively transforms Python into a MATLAB-quality number-crunching machine. More

recently, a package called Numarray has been developed by STSI (the Space Tele-

scope Science Institute) for image processing applications on data from the Hubble

Space Telescope. Numarray was initially a reimplementation of Numeric with better

performance characteristics for larger arrays, but it has since acquired a number of

useful add-on modules which are not present in Numeric. The code presented here

was written using Numarray, but much of it should be portable to Numeric.



APPENDIX B: SOURCE CODE

#####################################################################

#

# File: runreg.py

#

# Description: contains main(), the master function for the

# registration process. PIL (Python Imaging Library) and numarray

# are required in order to run the software.

#

#####################################################################

import Image

import math

import numarray

import numarray.linear_algebra as la

import numarray.nd_image as img

import imgconv

import analysis

import registration as reg

import display

import sys

import bayer

def prep_xform(xform):

newxform = numarray.zeros((2,2), numarray.Float64)

invxform = la.inverse(xform)

newxform[0, 0] = invxform[1, 1]

newxform[0, 1] = invxform[1, 0]

newxform[1, 0] = invxform[0, 1]

newxform[1, 1] = invxform[0, 0]

xoffset = invxform[0, 2]

yoffset = invxform[1, 2]

return (newxform, (yoffset, xoffset))

def analyze_xform(basepoints, warppoints, xform):

a = numarray.array([0, 0, 1], type = numarray.Float64)

delta = []

tot0 = 0

tot1 = 0

logfile = open(’point_migration.csv’, ’wt’)

logfile.write(’base x, base y, warp x, warp y, warped x, ’ \

’warped y, dist0, dist1\n’)
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for i in xrange(len(basepoints)):

base = basepoints[i]

warp = warppoints[i]

dist0 = math.sqrt((warp[0] - base[0])**2 \

+ (warp[1] - base[1])**2)

a[0] = warp[0]

a[1] = warp[1]

warped = numarray.matrixmultiply(xform, a)

dist1 = math.sqrt((warped[0] - base[0])**2 \

+ (warped[1] - base[1])**2)

report = ’%d, %d, %d, %d, %d, %d, %f, %f\n’ % \

(base[0], base[1], warp[0], \

warp[1], warped[0], warped[1], \

dist0, dist1)

logfile.write(report)

tot0 += dist0

tot1 += dist1

logfile.close()

print ’tot0 = ’, tot0

print ’tot1 = ’, tot1

def main():

# Basic configuration

basedir = ’.’

indir = ’data\\registration\\pair1’

cfgfile = ’pair1.py’

cfgpath = basedir + ’\\’ + indir

# Parse the config file

cfg = open(cfgpath + ’\\’ + cfgfile, ’rt’)

exec cfg

cfg.close()

print ’basefile =’, basefile

print ’warpfile =’, warpfile

# Generate the optimal affine transform

xform = reg.genxform(basepts, warppts)

print xform

# analyze_xform(basepts, warppts, xform)

# Read the input images and convert them to arrays

im0 = Image.open(cfgpath + ’\\’ + basefile)

im1 = Image.open(cfgpath + ’\\’ + warpfile)

a0 = imgconv.image2array(im0)
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a1 = imgconv.image2array(im1)

#a0 = a0[:, :, 0]

#a1 = a1[:, :, 0]

if bayerimg:

# Perform Bayer decoding, convert to YUV,

# then use the Y values.

display.saveimage(a0, ’base_bayer.tif’)

rgb = bayer.decode(a0, 0.9)

display.saveimage(rgb, ’base_rgb.tif’)

rgb = imgconv.normalize(rgb)

rgb = imgconv.rgb2yuv(rgb)

rgb *= 255

a0 = rgb[..., ..., 0].astype(numarray.UInt8)

display.saveimage(a1, ’warp_bayer.tif’)

rgb = bayer.decode(a1, 0.9)

display.saveimage(rgb, ’warp_rgb.tif’)

rgb = imgconv.normalize(rgb)

rgb = imgconv.rgb2yuv(rgb)

rgb *= 255

a1 = rgb[..., ..., 0].astype(numarray.UInt8)

display.saveimage(a0, ’base.tif’)

display.saveimage(a1, ’warp0.tif’)

# Initialize the warp image and save the output

affine = prep_xform(xform)

a2 = img.affine_transform(a1, affine[0], affine[1], order = 1)

print ’base min/max:’, a1.min(), ’/’, a1.max()

print ’warp min/max:’, a2.min(), ’/’, a2.max()

display.saveimage(a2, ’warp1.tif’)

# Generate the disparity map

dmap = reg.mkdmap(a0, a2, 256, analysis.peak2rms)

cutoff = 1.0

dmapfilt = reg.filter_dmap(dmap, cutoff)

print ’Total number of disparities:’, len(dmap)

print ’Disparities remaining after filter (cutoff = %f): %d’ \

% (cutoff, len(dmapfilt))

basepoints = []

warppoints = []

for i in dmapfilt:
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(xtrans, ytrans) = reg.gettrans(i[0])

basex = i[3]

basey = i[4]

warpx = i[3] - xtrans

warpy = i[4] - ytrans

basepoints.append((basex, basey))

warppoints.append((warpx, warpy))

analysis.vizdisp(i)

#display.surfplot(i[0])

xform = reg.genxform(basepoints, warppoints)

analyze_xform(basepoints, warppoints, xform)

affine = prep_xform(xform)

a3 = img.affine_transform(a2, affine[0], affine[1], order = 1)

display.saveimage(a3, ’warp2.tif’)

# Create difference images for evaluation

diff0 = analysis.diffimg(a0, a1)

print ’(diff0) min:’, diff0.min()

print ’(diff0) max:’, diff0.max()

print ’(diff0) stddev:’, diff0.stddev()

diffimg = imgconv.array2image(diff0)

diffimg.save(’diff0.tif’)

diff1 = analysis.diffimg(a0, a2)

print ’(diff1) min:’, diff1.min()

print ’(diff1) max:’, diff1.max()

print ’(diff1) stddev:’, diff1.stddev()

diffimg = imgconv.array2image(diff1)

diffimg.save(’diff1.tif’)

diff2 = analysis.diffimg(a0, a3)

print ’(diff2) min:’, diff2.min()

print ’(diff2) max:’, diff2.max()

print ’(diff2) stddev:’, diff2.stddev()

diffimg = imgconv.array2image(diff2)

diffimg.save(’diff2.tif’)

if __name__ == ’__main__’:

main()
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#####################################################################

#

# File: analysis.py

#

# Description: contains functions used for automated data analysis.

#

#####################################################################

import numarray

import numarray.nd_image as img

import math

import os

import imgconv

import display

import registration as reg

def peak2rms(a):

’’’Computes the peak:rms ratio of an array.’’’

peak = a.max()

rms = math.sqrt((a**2).mean())

return peak / rms

def diffimg(a, b):

’’’Generates a difference image between a and b. The returned

array is an 8-bit grayscale image. Pixels which were black in

either input are black in the difference image as well; they

are assumed to be the result of a transform which left portions

of an image without valid pixel data. Both input images should

be 2D Float32 or Float64 arrays.’’’

c = a.astype(numarray.Float64) - b.astype(numarray.Float64)

c /= 255

c /= 2

c += 0.5

c *= 255

c = c.astype(numarray.UInt8)

c[numarray.abs(a) < 1e-6] = 0

c[numarray.abs(b) < 1e-6] = 0

return c

def vizdisp(node):

’’’Visualize the result of processing a single node of a disparity

map. A subdirectory is created for the output. The name of the

subdirectory is node_xxxx_yyyy, in which the xxxx and the yyyy

refer to the pixel coordinates of the center of the tiles used

to generate the correlation surface. Within this directory, the
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following output is generated: the extracted tiles from the two

images, the correlation surface, a copy of the first tile with

crosshairs superimposed over the center, and a translated version

of the second tile with similar crosshairs.’’’

try:

os.mkdir(’output’)

except OSError:

pass

os.chdir(’output’)

dname = ’node_%04d_%04d’ % (node[3], node[4])

try:

os.mkdir(dname)

except OSError:

pass

os.chdir(dname)

# Generate 8-bit versions of the base and warp tiles

base = node[1].astype(numarray.UInt8)

warp = node[2].astype(numarray.UInt8)

# Generate an RGB image from the base tile, superimposing red

# crosshairs over the center.

shape3 = (base.shape[0], base.shape[1], 3)

rgb = numarray.array(shape = shape3, type = numarray.UInt8)

rgb[..., 0] = base

rgb[..., 1] = base

rgb[..., 2] = base

halfx = base.shape[1] / 2

halfy = base.shape[0] / 2

rgb[halfy, :, 0] = 255

rgb[:, halfx, 0] = 255

im = imgconv.array2image(rgb)

im.save(’base.tif’)

# Generate an RGB image from the warp tile, superimposing red

# crosshairs over the center.

shape3 = (warp.shape[0], warp.shape[1], 3)

rgb = numarray.array(shape = shape3, type = numarray.UInt8)

rgb[..., 0] = warp

rgb[..., 1] = warp

rgb[..., 2] = warp

halfx = warp.shape[1] / 2
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halfy = warp.shape[0] / 2

rgb[halfy, :, 0] = 255

rgb[:, halfx, 0] = 255

im = imgconv.array2image(rgb)

im.save(’warp0.tif’)

# Translate the warp tile, generate an RGB image from it,

# and superimpose red crosshairs over the new center.

(xtrans, ytrans) = reg.gettrans(node[0])

warped = img.shift(warp, (ytrans, xtrans), order = 1, \

prefilter = False)

rgb[..., 0] = warped

rgb[..., 1] = warped

rgb[..., 2] = warped

halfx = warped.shape[1] / 2

halfy = warped.shape[0] / 2

rgb[halfy, :, 0] = 255

rgb[:, halfx, 0] = 255

im = imgconv.array2image(rgb)

im.save(’warp1.tif’)

# Write some useful information out to a log file

log = file(’log.txt’, ’wt’)

log.write(’x: %d\n’ % xtrans)

log.write(’y: %d\n’ % ytrans)

log.close()

os.chdir(’..\\..’)
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#####################################################################

#

# File: bayer.py

#

# Description: contains functions used for Bayer image decoding.

#

#####################################################################

import numarray

import Image

import imgconv

import time

def whitebalance(a):

’’’White balances the input, a Bayer-encoded image. Uses the

’gray world’ model, which assumes that the mean value of all

three colors should be the same.’’’

r = a[::2, 1::2]

g0 = a[::2, ::2]

g1 = a[1::2, 1::2]

b = a[1::2, ::2]

avgr = r.mean()

avgg = (g0.mean() + g1.mean()) / 2

avgb = b.mean()

cr = 1.0

cg = 1.0

cb = 1.0

if avgr > avgg and avgr > avgb:

cg = avgr / avgg

cb = avgr / avgb

elif avgg > avgr and avgg > avgb:

cr = avgg / avgr

cb = avgg / avgb

else:

cr = avgb / avgr

cg = avgb / avgg

print ’White balancing coefficients: R/G/B = %.3f/%.3f/%.3f’ \

% (cr, cg, cb)

r *= cr

g0 *= cg

g1 *= cg

b *= cb
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def interpg(a):

’’’Interpolates the G value for an RGB triplet using correlated

Bayer interpolation. The input should be a 5x5 numarray array.’’’

vert = numarray.abs(a[0, 2] - a[4, 2])

horz = numarray.abs(a[2, 0] - a[2, 4])

if vert < horz:

return (a[1, 2] + a[3, 2]) / 2

elif horz < vert:

return (a[2, 1] + a[2, 3]) / 2

else:

return (a[1, 2] + a[3, 2] + a[2, 1] + a[2, 3]) / 4

def interp(a, x, y):

’’’Generates an RGB triplet for a single pixel using Bayer

interpolation. ’a’ is a numarray array, and (y, x)

is the pixel coordinate of interest. Returns a tuple containing

the interpolated RGB values.’’’

rgb = numarray.zeros(3, numarray.Float64)

if y % 2: # An odd row: BGBGBG...

if x % 2: # An odd column (green)

rgb[0] = (a[y - 1, x] + a[y + 1, x]) / 2.0

rgb[1] = a[y, x]

rgb[2] = (a[y, x - 1] + a[y, x + 1]) / 2.0

else: # An even column (blue)

rgb[0] = (a[y - 1, x - 1] + a[y - 1, x + 1] \

+ a[y + 1, x - 1] + a[y + 1, x + 1])\

/ 4.0

rgb[1] = interpg(a[(y - 2):(y + 3), \

(x - 2):(x + 3)])

rgb[2] = a[y, x]

else: # An even row: GRGRGR...

if x % 2: # An odd column (red)

rgb[0] = a[y, x]

rgb[1] = interpg(a[(y - 2):(y + 3), \

(x - 2):(x + 3)])

rgb[2] = (a[y - 1, x - 1] + a[y - 1, x + 1] \

+ a[y + 1, x - 1] + a[y + 1, x + 1])\

/ 4.0

else: # An even column (green)

rgb[0] = (a[y, x - 1] + a[y, x + 1]) / 2.0

rgb[1] = a[y, x]

rgb[2] = (a[y - 1, x] + a[y + 1, x]) / 2.0



80

return rgb

def interp2(a, x, y):

’’’Generates an RGB triplet for a single pixel using Bayer

interpolation. ’a’ is a numarray array, and (y, x)

is the pixel coordinate of interest. Returns a tuple

containing the interpolated RGB values. Slightly different

in implementation than interp(), and (surprisingly) slightly

slower.’’’

win = a[(y - 2):(y + 3), (x - 2):(x + 3)]

rgb = numarray.zeros(3, numarray.Float64)

if y % 2: # An odd row: BGBGBG...

if x % 2: # An odd column (green)

rgb[0] = (win[1, 2] + win[3, 2])[0] / 2.0

rgb[1] = win[2, 2][0]

rgb[2] = (win[2, 1] + win[2, 3])[0] / 2.0

else: # An even column (blue)

rgb[0] = (win[1, 1] + win[1, 3] + win[3, 1] \

+ win[3, 3])[0] / 4.0

rgb[1] = interpg(win)

rgb[2] = win[2, 2][0]

else: # An even row: GRGRGR...

if x % 2: # An odd column (red)

rgb[0] = win[2, 2][0]

rgb[1] = interpg(win)

rgb[2] = (win[1, 1] + win[1, 3] + win[3, 1] \

+ win[3, 3])[0] / 4.0

else: # An even column (green)

rgb[0] = (win[2, 1] + win[2, 3])[0] / 2.0

rgb[1] = win[2, 2][0]

rgb[2] = (win[1, 2] + win[3, 2])[0] / 2.0

return rgb

def bayer(a, satmat):

’’’Converts a grayscale image to an RGB image using Bayer

interpolation. The function also does white balancing and

color saturation on the image.’’’

b = numarray.zeros((a.shape[0] - 4, a.shape[1] - 4, 3), \

numarray.Float64)

for y in range(b.shape[0]):

if y % 100 == 0:

print ’Row %d/%d’ % (y + 1, b.shape[0])
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for x in range(b.shape[1]):

if satmat == None:

b[y, x, :] = interp(a, x + 2, y + 2)

else:

b[y, x, :] = \

numarray.matrixmultiply( \

satmat, interp(a, x + 2, \

y + 2))

return b

def adjrange(a):

’’’Adjusts the dynamic range of input image, an array of RGB

triplets. Sets the upper and lower bounds of the color

components to [0..255]. Only has an effect on oversaturated

images; if all components are already within the acceptable

bounds, nothing is done.’’’

low = a.min()

print ’Low:’, low

if low < 0.0:

a -= low

high = a.max()

print ’High:’, high

if high > 255.0:

range = high - low

scale = 255 / range

a *= scale

# Clamp the values to ward off floating-point oddities

lt0 = numarray.where(a < 0.0)

gt255 = numarray.where(a > 255.0)

print ’Clamping’, lt0[0].nelements(), ’at 0’

print ’Clamping’, gt255[0].nelements(), ’at 255’

a[lt0] = 0.0

a[gt255] = 255.0

def decode(a, k = 1.0, bal = True):

# Create the color saturation matrix

satmat = None

if k != 1.0:

r0 = [0.299 + 0.701 * k, 0.587 * (1 - k), \

0.114 * (1 - k)]

r1 = [0.299 * (1 - k), 0.587 + 0.413 * k, \
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0.114 * (1 - k)]

r2 = [0.299 * (1 - k), 0.587 * (1 - k), \

0.114 + 0.886 * k]

satmat = numarray.array([r0, r1, r2], \

type = numarray.Float64)

b = a.astype(numarray.Float64)

if bal:

whitebalance(b)

c = bayer(b, satmat)

adjrange(c)

return c.astype(numarray.UInt8)
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#####################################################################

#

# File: display.py

#

# Description: contains functions for data visualization.

#

#####################################################################

import numarray as na

import dislin

import imgconv

def surfplot(a):

’’’Displays a surface plot of a, a 2D array.’’’

xrng = na.arange(a.shape[0])

yrng = na.arange(a.shape[1])

dislin.surshade(a, xrng, yrng)

dislin.disfin()

def saveimage(a, name):

b = a.copy()

im = imgconv.array2image(b.astype(na.UInt8))

im.save(name)



84

#####################################################################

#

# File: imgconv.py

#

# Description: contains functions to convert between image formats:

# PIL/numarray, RGB/YUV, etc.

#

#####################################################################

import Image

import numarray

def image2array(im):

’’’Converts a PIL Image object to a numarray array object.’’’

if im.mode == ’L’ or im.mode == ’RGB’:

a = numarray.fromstring(im.tostring(), numarray.UInt8)

elif im.mode == ’F’:

a = numarray.fromstring(im.tostring(), numarray.Float32)

else:

print ’mode:’, im.mode

raise ValueError, ’unsupported image mode’

if im.mode == ’L’ or im.mode == ’F’:

a.shape = (im.size[1], im.size[0])

elif im.mode == ’RGB’:

a.shape = (im.size[1], im.size[0], 3)

return a

def array2image(a):

’’’Converts a numarray array object to a PIL Image object.’’’

mode = ’’

if len(a.shape) == 3 and a.shape[2] == 3:

if a.typecode() == numarray.UInt8:

mode = ’RGB’

elif len(a.shape) == 2 or a.shape[2] == 1:

if a.typecode() == numarray.UInt8:

mode = ’L’

elif a.typecode() == numarray.Float32:

mode = ’F’

if mode == ’L’ or mode == ’F’:

return Image.fromstring(mode, (a.shape[1], a.shape[0]), \

a.tostring())

elif mode == ’RGB’:
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ar = a[:, :, 0]

ag = a[:, :, 1]

ab = a[:, :, 2]

ir = Image.fromstring(’L’, (ar.shape[1], ar.shape[0]), \

ar.tostring())

ig = Image.fromstring(’L’, (ag.shape[1], ag.shape[0]), \

ag.tostring())

ib = Image.fromstring(’L’, (ab.shape[1], ab.shape[0]), \

ab.tostring())

im = Image.merge(’RGB’, [ir, ig, ib])

return Image.merge(’RGB’, [ir, ig, ib])

else:

raise ValueError, ’unsupported image mode’

def normalize(a):

’’’Normalizes an image.’’’

if a.typecode() == numarray.UInt8:

b = a.astype(numarray.Float64)

b /= 255;

else:

raise ValueError, ’unsupported image mode’

return b

def rescale(a, low, high):

amin = a.min()

amax = a.max()

adelta = amax - amin

bdelta = high - low

b = a.astype(numarray.Float64)

b -= amin

b /= adelta

b *= bdelta

b += low

return b

def fftshift(a):

b = numarray.zeros(a.shape, a.type())

halfy = a.shape[0] / 2

halfx = a.shape[1] / 2

mody = a.shape[0] % 2

modx = a.shape[1] % 2

b[:(halfy + mody), :(halfx + modx)] = a[halfy:, halfx:]

b[:(halfy + mody), (halfx + modx):] = a[halfy:, :halfx]

b[(halfy + mody):, (halfx + modx):] = a[:halfy, :halfx]
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b[(halfy + mody):, :(halfx + modx)] = a[:halfy, halfx:]

return b

def rgb2yuv(a):

’’’Converts an RGB image to the YUV colorspace.’’’

if a.shape[2] != 3:

raise ValueError, ’image must have 3 color planes’

b = numarray.zeros(a.shape, numarray.Float64)

b[..., 0] = a[..., 0] * 0.299 + a[..., 1] * 0.587 \

+ a[..., 2] * 0.114

b[..., 1] = a[..., 0] * -0.147 + a[..., 1] * -0.289 \

+ a[..., 2] * 0.436

b[..., 2] = a[..., 0] * 0.615 + a[..., 1] * -0.515 \

+ a[..., 2] * -0.100

return b
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#####################################################################

#

# File: registration.py

#

# Description: contains the core image registration functions.

#

#####################################################################

import numarray as na

import numarray.fft as fft

import numarray.linear_algebra as la

import imgconv

def xcorr2d(a, b):

’’’A non-normalized 2D cross-correlation in the frequency domain.

Returns the resultant correlation surface. a and b must have the

same dimensions; the correlation surface will have the same

dimensions as a and b.’’’

afreq = fft.fft2d(a)

bfreq = fft.fft2d(b)

xcorr = afreq * bfreq.conjugate()

csurf = fft.inverse_fft2d(xcorr)

csurf = na.abs(csurf)

csurf = imgconv.fftshift(csurf)

return csurf

def gettrans(a):

’’’The input is a correlation surface in which the low-frequency

components have been shifted to the center. The function finds

the peak of the surface and returns its coordinates relative to

the center. This value can be interpreted as a translation to

be applied to one of the two input images used to generate the

correlation surface, which will optimally align them.’’’

(y, x) = na.where(a == a.max())

y = y[0]

x = x[0]

y -= a.shape[0] % 2 + a.shape[0] / 2

x -= a.shape[1] % 2 + a.shape[1] / 2

return (x, y)

def croppair(x0, x1, trans):

’’’Given that x0 and x1 are a pair of images to be registered,

and x1 has already been translated by (xtrans, ytrans), crop

out the overlapping regions of both images and return them.’’’

y0 = x0.copy()
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y1 = x1.copy()

xtrans = trans[0]

ytrans = trans[1]

if xtrans >= 0:

if ytrans >= 0:

y0 = y0[ytrans:, xtrans:]

y1 = y1[ytrans:, xtrans:]

else:

y0 = y0[:ytrans, xtrans:]

y1 = y1[:ytrans, xtrans:]

else:

if ytrans >= 0:

y0 = y0[ytrans:, :xtrans]

y1 = y1[ytrans:, :xtrans]

else:

y0 = y0[:ytrans, :xtrans]

y1 = y1[:ytrans, :xtrans]

return (y0, y1)

def mkdmap(x0, x1, winsize, fomfunc):

’’’Generates a disparity map between x0 and x1, using the given

correlation window size. Returns a list of tuples; each tuple

contains a correlation surface, the two cropped images used to

create the surface, the x and y coordinates corresponding to the

center of the cropped images in the original pixel space, and a

figure of merit generated by feeding the correlation surface to

the function fomfunc.’’’

dmap = [];

for row in range(winsize, x0.shape[0] + winsize / 2, \

winsize / 2):

ctry = row - winsize / 2

print ’Processing row %d’ % ctry

for col in range(winsize, x0.shape[1] + winsize / 2, \

winsize / 2):

ctrx = col - winsize / 2

y0 = x0[(row - winsize):row, (col - winsize):col]

y1 = x1[(row - winsize):row, (col - winsize):col]

csurf = xcorr2d(y0, y1)

#fom = fomfunc(csurf)

fom = 1.01

node = (csurf, y0, y1, ctrx, ctry, fom)
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dmap.append(node)

return dmap

def filter_dmap(oldlist, cutoff):

’’’Should be applied to the list returned by mkdmap(). Returns

a list containing only the elements of the input list which have

a figure of merit greater than or equal to the cutoff value.

Other criteria are applied as well.’’’

newlist = []

for i in oldlist:

a = i[0]

(y, x) = na.where(a == a.max())

x = x[0]

y = y[0]

# If the peak is on a border row or column, it’s wrong.

if x == 0 or x == a.shape[1] - 1 or y == 0 \

or y == a.shape[0] - 1:

continue

# If more than 20% of the pixels in the base or warp tile are

# black, then the correlation is unreliable.

base = i[1]

warp = i[2]

npix = warp.size()

nvalid = warp.flat.nonzero()[0].size()

pctvalid = float(nvalid) / npix

if pctvalid < 0.95:

continue

if i[5] >= cutoff:

newlist.append(i)

return newlist

def genxform(basepts, warppts):

’’’Generates an optimal affine transform which warps one image

into another image’s pixel space. The inputs are two lists of

tuples. Each tuple contains an (x, y) image coordinate. basepts

is a list of pixel coordinates in the first image (the base).

warppts is a list of corresponding pixel coordinates in the

second image (the warp image). Both lists must be the same
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length. In addition, basepts[i] must correspond to warppts[i]

for all i.’’’

rows = len(basepts)

assert(rows == len(warppts))

assert(rows >= 3)

a = na.array(shape = (rows, 3), type = na.Float64)

bx = na.array(shape = (rows, 1), type = na.Float64)

by = na.array(shape = (rows, 1), type = na.Float64)

for i in range(rows):

a[i, 0] = warppts[i][0]

a[i, 1] = warppts[i][1]

a[i, 2] = 1

bx[i, 0] = basepts[i][0]

by[i, 0] = basepts[i][1]

xlsq = la.linear_least_squares(a, bx)

ylsq = la.linear_least_squares(a, by)

xvals = xlsq[0].flat

yvals = ylsq[0].flat

# Extract the scale, shear, and translation values for x and y.

# This code is here for clarity more than anything else.

xscale = xvals[0]

xshear = xvals[1]

xtrans = xvals[2]

yscale = yvals[1]

yshear = yvals[0]

ytrans = yvals[2]

xform = na.array(shape = (3, 3), type = na.Float64)

xform[0] = [xscale, xshear, xtrans]

xform[1] = [yshear, yscale, ytrans]

xform[2] = [0, 0, 1]

return xform


