
A GENERIC FRAMEWORK FOR THE APPLICATION OF GRAPH THEORY TO
IMAGE PROCESSING

by

Sonali Barua

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Charlotte

2007

 Approved by:

 Dr. Kalpathi R. Subramanian

 Dr. William J. Tolone

 Dr. Aidong Lu

 ii

©2007
Sonali Barua

ALL RIGHTS RESERVED

 iii

ABSTRACT

SONALI BARUA. A Generic framework for application of Graph Theory to Image

Processing.(Under the direction of DR. KALPATHI R. SUBRAMANIAN).

We report the development of a set of graph classes for the Insight Segmentation and

Registration Toolkit. Graph theory has important applications in medical image

processing such as centerline extraction; segmentation, skeletonization and distance

transform calculation. Using generic programming and the philosophy of reusability and

object-oriented design, a graph library has been designed and implemented. Classes have

been designed for the Prim’s minimum spanning tree, the depth first search algorithm, the

Dijkstra’s shortest path algorithm and the breadth first search algorithm. Supporting

classes developed include the several classes that change an image to a graph and also

classes that help determine whether a pixel is a node or not. The Prim’s minimums

spanning tree and the depth first search class have been applied for skeleton and

centerline extraction within the Insight Registration and Segmentation Toolkit pipeline.

 iv

TABLE OF CONTENTS

LIST OF FIGURES vi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 7

2.1 Image Processing, Segmentation and Registration 7

2.2 Generic Programming 10

2.3 Graph theory and its application in image processing and analysis 11

2.3.1 Graph theory And Its Application To Segmentation. 12

2.3.2 Graph Theory And Its Application To Distance Transform 13

2.3.3 Graph Theory And Its Application To Registration 13

2.3.4 Graph Theory And Its Application To Centerline Extraction 14

2.3.5 Graph theory And Its Implementation Using Generic Programming 15

CHAPTER 3: GRAPH CLASSES 17

3.1 Process Objects in the Graph Library: the GraphToGraphFilter and 17
 ImageToGraphFilter General Design

3.2 Data Representation of Graphs 21

3.3 DataObject and ProcessObject Design that is Specific to Graph 23
 Algorithms

3.4 Graph Algorithms 25

 3.4.1 Prim’s Minimum Spanning Tree 25

 3.4.2 Kruskal’s Minimum SpanningTree 27

 3.4.3 Dijkstra’s Shortest Path Algorithm 28

 3.4.4 Depth First Search Algorithm 30

 3.4.5 Breadth First Search Algorithm 33

 v

CHAPTER 4: EXPERIMENTATION AND APPLICATION 36

4.1 Experimentation 36

4.2 Application of the Graph Classes: Centerline Extraction 38

CHAPTER 5: CONCLUSIONS 46

REFERENCES 47

APPENDIX A: ITK ARCHITECTURE AND DESIGN. 49

 vi

LIST OF FIGURES

FIGURE 2.1: Image Processing Pipeline 10
FIGURE 2.2: Graph 12
FIGURE 3.1: Graph Data Object and Process Object Inheritance Diagram 17
FIGURE 3.2: Graph Traits Inheritance and Relationship Diagram 21
FIGURE 3.3 Prim MST Graph Traits Inheritance and Relationship Diagram 23
FIGURE 3.4 Prim Minimum Spanning Tree Inheritance Diagram 24
FIGURE 3.5 Prim Minimum Spanning Tree Inheritance Diagram. 26
FIGURE 3.6 Dijkstra’s Shortest Path Graph Traits Inheritance Diagram 29
FIGURE 3.7 Depth First Search Graph Traits Inheritance Diagram 31
FIGURE 3.8 Depth First Search Graph Filter Class Inheritance Diagram 32
FIGURE 3.9 Breadth First Search Graph Inheritance Diagram 34
FIGURE 3.10 Breadth First Search Graph Filter Inheritance Diagram 35
FIGURE 4.1 Skeleton of a Cylinder whose end points were predetermined 43
FIGURE 4.2 Skeleton of a Cylinder whose end points were calculated dynamically 44
FIGURE 4.3 Skeleton of an MRT data 45

FIGURE A.1. ITK Image Filter Data Pipeline 57
FIGURE A.2. Image DataObject and ProcessObject inheritence diagram(taken from 61

 the ITK Getting started series)
FIGURE A.3. Relationship between ProcessObject and DataObject 63

FIGURE A.4. Data Execution Pipeline 64

 vii

CHAPTER 1: INTRODUCTION

Medical Imaging is the set of techniques and processes that are employed to create

images of the human body for medical and clinical purposes [8, 9]. Its rapid development

and proliferation has changed how medicine is practiced in the modern world. Medical

imaging allows doctors and medical practitioners to non-invasively observe and analyze

life saving information. Medical Imaging has gone beyond mere visualization and

inspection of anatomic structures. Its application has expanded to include its use as a tool

for surgical planning and simulation, intra-operative navigation, radiotherapy planning

and for tracking the progress of a disease. For example, in radiotherapy, medical imaging

allows a physician to deliver a necrotic dose of radiation to a tumor with very little

collateral damage to the surrounding tissue.

 Every year, millions of images of patients are taken which are in varying

dimensions and sizes. Most of them are three-dimensional or four-dimensional images of

patients taken in order to assist in diagnosis and therapy. There are many medical

imaging modalities. The more commonly used ones are Computed Tomography (CT),

Magnetic Resonance (MR), Ultrasounds (US), and Nuclear Medicine (NM) techniques

such as Positron Emission Tomography (PET), as described in [8].

Although these modalities on their own have provided exceptional images of the

internal anatomy, the application of computing technology to quantify and analyze the

embedded structures within the image volumes with accuracy and efficiency has been

 viii

limited. In order to apply computing for biomedical investigations and clinical activities,

accurate and repeatable quantitative data must be extracted efficiently. Unfortunately, at

the current state, medical imaging has more qualitative features, with most observations

of medical images done on two dimensional analogical supports such as films, typically

on the basis of varying cross sections and a single modality at a time. Development of

systems to support digital imaging of medical data has gained momentum over the past

few years. It has lead to new and improved methodologies for storing medical images in

digital formats on the production site and with the help of high bandwidth networks has

open a new era with the potential for a much more efficient and powerful exploitation of

images through image analysis and image processing, as has been explained in [8] and

[9].

Image Analysis is the methodology by which information from images is extracted.

Image analysis is mainly performed on digital images by using digital image processing

techniques. Image processing consists of several techniques for feature extraction. Some

of the images processing methodologies are segmentation, registration; dilating, eroding,

skeletonization and distance transform calculation [7].

Interpreting quantitative data from two-dimensional analog cross sections is difficult

and not very effective. In order to resolve that, digital image processing and analysis have

introduced objective and three-dimensional measurements in the images. This allows

precise extraction of data such as size, location and texture from three-dimensional

anatomical and pathological structures. Visualization adds to the qualitative analysis of

three-dimensional and four-dimensional images. All the above techniques are applicable

for diagnosis of anatomical data. In order to apply image processing and analysis to

 ix

therapy, simulation is a methodology that helps in therapy. A virtual patient model helps

in simulation of a particular therapy either with the help of a standard simulation of a

patient or with the help of a template from the actual patient himself or herself although

the latter will require a delicate intervention of that patient’s anatomy [8, 9].

Image segmentation is one the earlier techniques applied to medical images, which

are in the digital format. Segmentation is a technique by which an image is partitioned

into physically meaningful regions. There are several approaches to segmentation. Many

of these approaches have been adopted from various concepts such as mathematical

morphology, energy minimization, partial differential equations, graph theoretic

approach, or a combination of these approaches. There are no unique solutions and most

segmentation problems are resolved using a combination of these techniques. Low-level

image processing techniques for segmentation such as region growing, edge detection

and mathematical morphology operations requires considerable amounts of expert

interactive guidance. Deformable model based segmentation, on the other hand, can be

applied without the need for slice editing and traditional image processing techniques and

overcomes the latter’s shortcomings that require the interactive guidance.

Following segmentation, the next image processing technique commonly used is

image Registration. Image registration is the process of aligning images that are obtained,

for example, at different times, from different sensors or from different viewpoints.

Image registration can be performed intra- or inter- patient and between mono- or multi-

modal three-dimensional images. This then leads to rigid and non-rigid image registration

techniques as well as mono and multi-modal registration techniques. Some are feature

based, using the result of a segmented image, for example, and some use raw image data.

 x

There is a broad range of registration techniques that have been developed for different

applications that use different mathematical concepts including correlation and sequential

methods, Fourier transform methods, point mapping and model based mapping and graph

theoretic based methods using prior information of the images for comparison and

contrast for registration [8, 9].

Image processing also involves motion tracking of four-dimensional models as well.

There are two objectives for motion tracking of four-dimensional models. First objective

is the tracking of the boundaries of some anatomical structures to estimate the

displacement field of a volume. Second objective is the quantification of the over all

motion with a few objective and significant parameters. Deformable model based image

processing techniques are commonly used for motion tracking [8].

Along with other techniques for medical data analysis, visualization of medical data

is a common analysis tool that had gained some popularity before in terms of research

contribution to the field. In general visualization requires a preliminary segmentation

stage before any beneficial data maybe gathered from the technique. It also employs

three-dimensional interactive graphics for the visualization of three-dimensional

anatomical structure [9].

An image-processing tool that has seen wide applications in the medical imaging field

is skeletonization. Skeletonization is the image processing technique that reduces the

foreground in a binary image to a skeletal remnant that largely preserves the extent and

connectivity of the original region while throwing away most of the original foreground

pixels [7, 11, 12, and 13]. Skeletonization works by starting from the boundary of a

 xi

volume and traversing to a common mid point within the volume. Skeletonization is seen

as connected centerlines, consisting of medial points of consecutive clusters [10].

This tool can be used for compact shape description, path planning and other

applications such as motion tracking. Skeletonization of a three dimensional volume

usually compacts the discrete objects within the volume and it provides an efficient

method for visualization and analysis, such as feature extraction, feature tracking, surface

generation, or automatic navigation [8, 10].

The image-processing techniques mentioned before can be improved using a graph

theoretic approach. In segmentation, for example, graph theory has been successful

applied by using graph search algorithms to find edge boundaries. Similarly, in

registration, graph theory is applied to calculate the alignment of the pictures based on

features of the images or mathematical constraints such as entropy by using the minimum

spanning tree algorithm to calculate the minimum value of deviation and so on. Graph

theory is also applicable in calculating the distance transform of the pixels in the images

and the shortest path algorithm is applied to calculate the distance between the interior

pixels and the contour pixels. With the help of distance transform calculation, the

skeleton of a volume can be calculated along with the help of minimum spanning tree to

calculate the minimum distance from the outer contours of the volume to the interior

medial points [2, 3, 4, 5, 6, and 7].

As has been discussed above, graph theory has many applications in the image-

processing pipeline. However, few image processing toolkits have implemented the graph

algorithms in a generic and object oriented manner that would allow it to be applied for

medical image processing. Although Boost [17] has a Graph library that is generic in

 xii

nature, it didn’t design its software to be specific to image processing. The design

proposed in this document for graph algorithms have been made keeping in mind the

generic nature of the images used by medical images and also the specific nature of the

data processed. Analyze [18] is another medical image processing toolkit that is object

oriented in nature but not generic and hence has its own limitations. Analyze also uses

Insight Registration and Segmentation Toolkit for some of its segmentation and

registration calculations. Insight Registration and Segmentation Toolkit employs a

generic and object oriented framework.

In this thesis we present this framework and extending it to include graph objects

amongst its Data Objects, which uses an object factory design model, that can be easily

generalized by a user, four graph algorithms have been proposed that has implemented

these algorithms to be efficient and generalized for large multi-dimensional medical

images. It has also been designed to be independent of the metadata of an image. The

algorithms implemented include Prim’s minimum spanning tree, Kruskal’s minimum

spanning tree, Dijkstra’s shortest path, depth first search and breadth first search. Each is

designed to be an In-place filter that is they use the same memory for the input and output

graphs. Their outputs are usually parent node and child node map structure lists. Several

supporting algorithms such as functors, which help determine the logic that is to be used

for the application of the graph algorithms or for the conversion of images to their

representational graphs, have been designed in order to make it an effective application in

the generic framework. The functors follow the software design method commonly

known as the visitor design. Other supporting classes that are specific to the

implementation have also been made.

 xiii

Tests have been conducted for the robustness and the efficiency of the application. On

average the time it takes to execute a single pipeline from conversion of the image to

graph to the assignment of an object the values of the map container containing the parent

and child vertices of the graph, was around 12 to 24 milliseconds. An application of this

framework on three-dimensional objects for skeletonization has shown its applicability to

larger volumes and its relative time efficiency.

 xiv

CHAPTER 2: BACKGROUND

2.1 Image Processing, Segmentation and Registration.

Image processing is a form of information processing which is applied to images and

video sequences. Image processing has the following steps, as it has been explained in

[7]:

• Image acquisition involves using an image sensor and hardware capable of changing

the signal data from the sensors to a digitized or analog form.

• Preprocessing typically deals with techniques that improve the data quality and

success of subsequent processes in the image processing pipeline. For example, noise

reduction, contrast enhancement and so on.

• During Segmentation, an input image is partitioned into its constituent parts or

objects. The output image of this stage usually consists raw pixel data which either

defines the boundary of a region or all points of the region in itself. Whether the data

constitutes the data of the boundary of a region or the region is dependent upon the

application of the image process.

• Also known as Feature Selection, Description is the stage where features are

extracted that are of some quantitative information of interest or features within the

image that are basic for differentiating one class of objects from another.

 xv

• Recognition is the process that assigns labels to an object based on the information

provided by descriptors. Interpretation involves assigning a meaning to an ensemble

of recognized objects or labeled entities.

• The Knowledge Base is responsible for guiding the operation of the image

processing module and for controlling the interaction between modules. In the first

case, the knowledge base holds information about a problem domain in the form of a

database that is coded into the image processing system. The knowledge base can

either as simple as detailing the regions of an image where the information of interest

is located or it can be complex where a list of inter-related and possible defects in a

materials inspection problem. In the second case, it depicts that the communication

between two modules are dependent upon the prior knowledge of what the result

should be for a processing module.

• Image Registration is the process module used during the reconstruction of three-

dimensional objects from serial sections. It involves overlaying two images of the

same scene by translating and rotating the objects in the images so that corresponding

points of two images are coincident with one another.

 xvi

Figure 2.1 Image Processing Pipeline

2.2 Generic Programming.

Generic programming is a method of organizing libraries consisting of generic or

reusable software components. Generic programming usually consist of containers that

hold data, iterators to access the data and generic algorithms that use containers and

iterators to create efficient fundamental algorithms such as sorting. It is implemented in

C++ using template programming mechanism and the use of the STL (Standard template

Library. C++ template programming is a programming technique that allows users to

write software in terms of one or more unknown types T. A user of the software defines

the type T in order to create executable code. The T may be a native type such as float or

int or T may be a user-defined type (e.g. class). At compile time the compiler makes sure

that the template types are compatible with the instantiated code and that the types are

supported by the necessary methods and operators.

 xvii

The advantage of using generic programming is that simply defining the appropriate

template types supports an almost unlimited variety of data types. For example, in ITK it

is possible to create images consisting of almost any type of pixel. The type resolution is

done during compile time, so the compiler can optimize the code to deliver maximal

performance. The disadvantage of generic programming is that many compilers usually

do not support this high level of abstraction. Although some compilers may support

generic programming, they may produce undecipherable code even for some of the

simplest of errors.

 2.3 Graph Theory And Its Application In Image Processing and Analysis.

A Graph G is said an ordered triple (V (G), E (G), ψ G) where V(G) is a nonempty set

of vertices, E(G) is a set of edges disjoint from V(G) and an incidence function ψ G that

associates with each edge of G an unordered pair of vertices of G which are not

necessarily distinct. If e is an edge and u and v are vertices such that ψ G (e) =uv, then e is

said to join u and v; the vertices u and v are called the ends of e [7, and 14]. For example,

 G= (V (G), E (G), ψ G)

where, V (G) = {v1, v2, v3, v4, v5},

E (G) = {e1, e2, e3, e4, e5, e6, e7, e8}.

And, ψ G is defined as

ψ G (e1) =v1v2, ψ G (e2) =v2v3, ψ G (e3) =v3v3, ψ G (e4) =v3v4,

ψ G (e5) =v4v2, ψ G (e6) =v6v5, ψ G (e7) =v2v5, ψ G (e8) =v2v5.

 xviii

Graph theory has many applications in Image processing, especially in processes such

as Segmentation and Registration. The following describes how graph theory is applied

in segmentation, registration, distance mapping and skeletonization.

2.3.1 Graph theory And Its Application To Segmentation.

Graph theory can be used in segmentation of an image if the shape of the segmented

region is dependent on the scanning direction. Graph theory is applied to the smoothed

image. Segmented regions are given higher precise boundaries. In order to maintain the

homogeneous property, a threshold value is induced to maintain the merging process of

the graph theory. The following steps are used for application of graph theory on

segmented images. 1) A Graph is created where each image pixel corresponds to a graph

vertex and the vertex weight corresponds to the pixel value or the pixel intensity. Each

vertex is linked to its adjacent vertices in 4 perpendicular directions. 2) The linked weight

or the edge weight is determined by either the absolute difference in intensity value of

each vertex or any other formula for comparison between the two vertices. 3) Merge two

vertices by removing the link between them if the link weight is less than the threshold

Figure 2.2 Graph

 xix

value. The vertices are connected by the removed link are merged together with respect

to the homogeneity criterion. The weight of the merged vertices will be replaced by their

average value, therefore the link weights around these vertices have to be updated. 4)

Region boundaries are created by different average values of the linked weights which

are used to separate by the boundary links [14, 3, 7 and 8].

 2.3.2. Graph Theory And Its Application To Distance Transform.

Graph theory can also be used to calculate the distance transform of an image using

the classical shortest path algorithm in Graph Theory. The distance transform can be

formulated as a graph theoretic problem by building a graph from the binary image

whose distance transform we want to calculate and a neighborhood relationship between

the pixels. The edges between the vertices are representing the desired distance metric.

The tree roots are the external contour pixels of the objects. The shortest path from each

pixel to the nearest root pixel is calculated. The distance image is the image which the

pixel value is the path length to the nearest background pixel (root) [4, 9, 11, and 12].

2.3.3. Graph Theory And Its Application To Registration.

Graph theory can be used for image registration especially minimum spanning tree

graph algorithm. To apply minimum spanning tree to image registration, one can use the

fact that for perfectly aligned images their entropy value of the overlapped images would

be minimum and hence the total length of the corresponding graph is the shortest

amongst all the possible overlapping of the two images. Given the two noisy images

I1and I2, to register these images, the following steps can be applied. 1) Feature vectors F1

and F2 are extracted from their respective images I1 and I2. 2) Noise contamination

 xx

removal via k means MST method. 3) An Initial spatial transformation T is chosen. 4)

Apply transformation T to F1 and merge the resulting feature vectors T (F1) into F2. 5)

Calculate the minimum spanning tree of the graph generated from the bitmaps of the

overlapped feature vectors. 6) Refine the transformation T. The steps 4 to 6 are repeated

until the dissimilarity metric comes to its minima [5, 8, 9,7,11, and 12].

 2.3.4. Graph Theory And Its Application To Centerline Extraction.

Another application of graph theory is the extraction of the centerline and the

skeletonization of a medical image volume. Blum et al introduced the concept of

centerline or medial or symmetric axes [8]. In a tubular object such as the colon, for

example, a single centerline usually spans the entire length of the volume. If an object is

more complicated in shape then it may have several centerlines attaching each other

through the object. The topology of such a group of centerlines usually forms something

that looks similar to the skeleton of the object. Hence, the set of connected centerline of

an object is also called skeleton and the process of extracting the skeleton is called

skeletonization [11].

One of the applications of centerline extraction is Virtual Endoscopy. Some methods

for finding the centerline in virtual endoscopy, for example, are distance mapping and

topological thinning which uses graph theory to extract the centerlines. The other

methods are manual and does not use graph theory [11]

 Virtual endoscopy using topological thinning consists of three steps, as described in

[11]. The first step is to process medical images and segment them to get structures of

interest from the images. The second step consists of generating flight steps within these

structures to obtain potential camera positions. The third and final step consists of

 xxi

generating perspective views of the internal surfaces of such structures with the given

flight paths and using conventional graphics rendering techniques. The calculation of the

flight steps may be automatic or semi automatic. Most automatic centerline extraction

algorithms make extensive use of graph theory to calculate the flight paths of the volumes

processed. Some of the methods to calculate the centerline take into consideration the

features of the images such as the Euclidean distance of the pixels from the boundary so

as to keep the minimal paths of the flight paths centered. Another technique to calculate

the minimal flight path is use the same Euclidean distance but formulated in a discrete

setting. A discrete setting for such a methodology is to represent a coarse representation

of the three dimensional volume as a graph. Each edge of the graph is assigned a weight,

which is the combination of the Euclidean distance from the boundary object. The

Dijkstra’s shortest path algorithm is applied to this graph to extract the minimal flight

path, which in turn represents the centerline of the volume.

Extracting the centerline in virtual endoscopy using distance mapping involves two

phases. This method is also known to be one of the fastest methods for centerline

extraction. The first phase consists of computing the distance from a user-specified or

computed source point to each voxel inside the 3-D object, known as the distance from

the starting point. After this distance is calculated, the second phase involves calculating

and extracting the shortest path from any starting voxel to the source point by descending

through the gradient of the distance map. If it is used to create the distance map The

shortest path can be rapidly extracted by a simple back tracing algorithm, rather than the

steepest descent [12].

 xxii

2.3.5. Graph theory And Its Implementation Using Generic Programming.

There have been several designs used to implement graphs and their algorithms in a

generic fashion. Most graph algorithms require some modification in order to make the

data output meaningful. Hence, most graph implementation is done for a specific

application. Some applications such as the Boost Library [18] have implemented graphs

for a generic framework. However, they have not made it designed for medical image

analysis specifically. Insight Segmentation and Registration Toolkit [13] implements a

generic framework but lacks a comprehensive application of graph data objects in their

library. Analyze [17], which is medical image analysis software, has been implemented

using a procedural language and hence cannot take advantage of generic program

designs. The graph framework proposed takes into consideration the generic capabilities

of the toolkit while designing its functionalities.

 xxiii

CHAPTER 3: GRAPH CLASSES USING A GENERIC FRAMEWORK

 As seen in the earlier chapter, the image data object and its filters follow a hierarchy

in terms of functionalities. To emulate the same functionalities, the same hierarchy was

followed and was used for the design for the Graph library.

3.1 Process Objects In The Graph Library: The GraphToGraphFilter and

ImageToGraphFilter General Design.

Figure 3.1 Graph Data Object and Process Object Inheritance Diagram

 xxiv

The proposed graph library follows similar design and architecture as that of the

Image class and the ImageToImageFilter class. As we have seen in the case of the Image

class and ImageToImageFilter design, all filter classes are inherited from

itk::ProcessObject. The class called GraphSource, which has a design similar to that of

ImageSource for the ImageToImageFilter inheritance diagram, is a base class for all

process objects that output graph data. Specifically, this class defines the GetOutput ()

method that returns a pointer to the output graph. The class also defines some internal

private data members that are used to manage streaming of data. The GraphSource also

has the definitions for GraftOutput (). The GraftOutput () function takes the specified

DataObject and maps it onto the ProcessObject’s output. The method or function then

grabs a handle to the specified DataObject’s bulk data to use as its output’s bulk data. It

also copies the ivars and the meta-data from the specified data object into the

GraphSource object’s output DataObject [2].

 An ImageToGraphFilter is sub-classed from GraphSource. The

ImageToGraphFilter converts a given image to a graph depending upon the specification

determined by DefaultImageToGraphFunctor. A DefaultImageToGraphFunctor is a

class that defines which pixels will be considered nodes and which will not be considered

nodes and also to decide on the edges of the graph. The DefaultImageToGraphFunctor is

a sub-class of the ImageToGraphFunctor class. The ImageToGraphFunctor has the

methods GetEdgeWeight (), GetNodeWeight (), IsPixelANode () and NormalizeGraph ()

declared in this definition. The GetEdgeWeight is a virtual function that, when defined, is

used to define the edge weight between two nodes. It accepts the indexes of the first and

second pixels between which the nodes are defined. The GetNodeWeight () method is a

 xxv

virtual function that, when defined, is used to assign the node weight to a node. Usually it

is the image pixel value but can be defined to represent data that is not related to the pixel

value. The IsPixelANode () method is used to define the pixels that will be determined as

a node. Usually it is easy to define the method when it involves a segmented image.

NormalizeGraph lets the user make adjustments to the graph. SetRadius () is used to

define the length of the radius of the NeighborhoodIterator that is used to determine the

edge weights and the nodes that form edges. Several itkGetMacro and itkSetMacro

functions are defined for the variables ExcludeBackground, which is a Boolean type, and

BackgroundValue, which is a PixelType. ExcludeBackground is set to true if the output

graph is constructed from a sub-region. BackgroundValue defines the pixels whose

values are not considered as being part of the sub-region which would form the graph.

The DefaultImageToGraphFunctor implements the methods GetNodeWeight,

GetEdgeWeight, IsPixelANode and SetRadius[2].

The ImageToGraphFilter applies the logic for converting the image into a graph with

the help of the functor classes mentioned above. The initial design proposed by [2] had

the ImageToGraphFuntor class defined as a variable and the class took a

DefaultImageToGraphFunctor variable that was not a template class. Changes have been

made to the template parameters to allow an ImageToGraphFunctor class as a template

parameter, thereby, allowing users to change the logic implemented for the graph while

converting it from an image. The ImageToGraphFilter also defines the SetInput function

of the base class GraphSource and defines the method to accept a variable of the

itk::Image class.

 xxvi

Another class that inherits from GraphSource is the GraphToGraphFilter which

contains the graph algorithm that acts on the Graph data object [2]. The

GraphToGraphFilter takes in an itkGraph template parameter as an input and another

class definition of the itkGraph class as an output. The GraphToGraphFilter dedicates

two separate data object variables for the input and output graphs. For large images this

could mean a lot of space in terms of memory and execution time. As the

ImageToGraphFilter defines the SetInput method to accept an itk::Image class, the

GraphToGraphFilter defines the SetInput method to accept an itk::Graph class. This

class is used as a base class for all filters that accept an itk::Graph as an input and outputs

an itk::Graph as well.

InPlaceGraphFilter is a sub class of GraphToGraphFilter, which has only one

template parameter and is implemented if both the input and output have the same

definition for the Graph class as a template parameter and if the memory of the input data

is shared by the output data. Otherwise, the definition of GraphToGraphFilter is used

instead, if the input and output definitions for the Graph data object are different. This

class saves memory as most medical images generally large in size.

xxvii

3.2 Data Representation of Graphs.

Itk::Graph is a class that is sub classed from DataObject class like the Image

DataObject. Itk::Graph references DefaultGraphTraits which defines the Graph Node

and Graph edge structure types. ImageGraphTraits inherits from DefaultGraphTraits and

defines the properties of the Node and Edge structure specifically for an image by storing

the pixel data as well [2].

The definition of the nodes and edges is provided by template parameters for

itk::Graph which are sub classes of DefaultGraphTraits. The Node structure contains a

unique number or key that is the Identifier of the node, a vector container that holds all

the outgoing edge indices, a vector container that holds all the incoming edges and the

Figure 3.2 Graph Traits Inheritance and Relationship Diagram

xxviii

node weight. The Edge structure consists of the unique edge key or Identifier, the

Identifier of the source node and the Identifier of the edge node. An identifier for any

corresponding reverse edges is also stored, and the final field is the edge weight. The data

type for both the edge and node weight is determined by a template parameter that is used

to define the DefaultGraphTraits class. . ImageGraphTraits adds the Index of the pixel

that is being represented by the node to the node structure as an itk::Index variable along

with the other fields [2].

Itk::Graph consists of containers that hold the nodes and edges. These containers are

vectors. CreateNewEdge () and CreateNewNode () are defined to create nodes and their

corresponding edges. These classes are also overloaded to define several other

possibilities in input parameters. GetNode () and GetEdge () return the corresponding

node and edge. Variations of these methods have also been defined. GeNodePointer and

GetEdgePointer returns a pointer variable of the requested node and edge respectively.

SetNodeContainer and SetEdgeContainer sets the node and edge containers whereas the

GetNodeContainer and GetEdgeContainer allows access to the node and edge containers.

There variations of the GetNodeWeight and GetEdgeWeight methods that return the node

and edge weights respectively. There are methods to change the weight of a node and

edge as well. Most methods take the identifier of the node as a parameter. The itk::Graph

also has two friend classes defined. They are the NodeIterator and the EdgeIterator. The

NodeIterator is an Iterator class. An Iterator class is a class that iterates through the data

object element by element and has several operators overloaded. The NodeIterator class

iterates over the nodes if the itk::Graph class. The EdgeIterator class iterates through the

 xxix

edges of the graph. Both Iterators have a GoToBegin () and IsAtEnd () classes. The

GoToBegin () method goes to the start of the container holding the nodes or edges. The

IsAtEnd () method checks whether the Iterator has reached the end of the container. The

GetPointer() method returns a pointer to the node or edge that the Iterator is currently

pointing to. Get () returns the node or edge that the Iterator is pointing to. GetIdentifier ()

just returns the Index of the node container in the list [2].

3.3 DataObject and ProcessObject Design That Is Specific To Graph Algorithms

Figure 3.3 Prim’s MST Graph Traits Inheritance and Relationship Diagram

For the proposed graph algorithm, the ImageGraphTraits class is further sub classed

to be more specific for each graph algorithm. For the Prim’s Minimum Spanning Tree

Graph algorithm, the PrimMinimumSpanningTreeGraphTraits has been defined. This is

sent as a template for the PrimMinimumSpanningTreeGraphFilter. The

PrimMinimumSpanningTreeGraphTraits has a node structure which is similar to that of

ImageGraphTraits but has some additional fields. In addition to the Identifier, the two

 xxx

containers of edges for outgoing edges and incoming edges, and the node weight, the

node structure also has fields that describe the color of each node and the key weight of

each node or the corresponding distance weight at each node. The color field is an

enumerate type named ColorType which has three colors defined: White, Gray and

Black. The KeyWeight field is of type EdgeWeight whose data type is defined by the

template parameter of the ImageGraphTraits class.

Figure 3.4 Prim Minimum Spanning Tree Inheritance Diagram

For Example, the InPlaceGraphFilter and the DefaultImageToGraphFunctor in turn

are inherited by PrimMinimumSpanningTreeGraphFilter and

PrimMinimumSpanningTreeImageToGraphFunctor class respectively. The

PrimMinimumSpanningTreeGraphFilter implements the Prim Minimum Spanning Tree

algorithm while maintaining the interface from InPlaceGraphFilter.

PrimMinimumSpanningTreeImageToGraphFunctor defines the logic by which a node is

determined from a pixel or not and whether or not a particular relation between two

nodes can be considered an edge.

 xxxi

3.4 Graph Algorithms

The next few sections will discuss the algorithms that have been developed for the

Insight Segmentation and Registration Toolkit. The first section is about the Prim’s

minimum spanning tree algorithm and its implementation details. The second section is

about the Dijkstra’s shortest path algorithm following that is the breadth first search

algorithm and the depth first search algorithms.

3.4.1 Prim’s Minimum Spanning Tree.

Generic minimum spanning tree algorithm is a greedy algorithm that grows a

minimum spanning tree one edge at a time. Prim’s Minimum Spanning Tree algorithm is

xxxii

a generic minimum spanning tree algorithm [14]. The Prim’s algorithm has the property

that the edges of a set A that forms the minimum spanning tree forms a single tree. The

tree starts from an arbitrary root vertex r and grows until the tree spans all vertices in V.

At each step, a light edge is added to the minimum spanning tree A whose one vertex is

in A and the other is in V-A. This strategy is said to be greedy as the tree augmented at

every step adds an edge that has a minimum amount possible to the tree’s weight. During

the execution of the algorithm, all vertices that are not in the tree reside in the Priority

queue based on the key field. For each vertex v, key[v] is the minimum weight of any

edge connecting v to a vertex in the tree. By convention, the key value of a vertex v is

equal to infinity if such a vertex does not exists. The parent of a node v stores the source

node of the edge that is part of the minimum spanning tree and is the parent of the node v.

The algorithm terminates when the priority queue is empty.

Figure 3.5 Prim Minimum Spanning Tree Inheritance Diagram

The itk::PrimMinimumSpanningTreeGraphFilter is a sub class of

InPlaceGraphFilter that implements the Prim’s Minimum Spanning Tree algorithm on an

xxxiii

itk::Graph Data Object. It takes in itk::Graph as a template parameter and also as an

Input. It outputs an itk::Graph Data Object that is similar to the Input except that it now

contains the distance weight or key weight for each node and also the updated color

sequence. In order to access the parent node of each node that forms the minimum

spanning tree, the function call GetMinimumSpanningTree () is returns a

ParentNodeListType that is an itk::MapContainer type. The itk::MapContainer takes a

NodeIdentifierType which stores the child node’s identifier variable as the Element

identifier and the Element of the itk::MapContainer is another NodeIdentifierType which

stores the parent’s node identifier. The itk::PrimMinimumSpanningTreeGraphFilter also

calculates the total weight of the Minimum Spanning tree and that weight can be accessed

via the GetDistanceWeight () method call which returns a double value type. In order to

be able to assign a different node as the starting node of the algorithm, the class has a

SetRootNodeIdentifier () method call which accepts a NodeIdentifierType as a parameter.

The identifier is that of the node which is to be the starting node of the algorithm.

3.4.2 Kruskal’s Minimum Spanning Tree Algorithm

Kruskal’s algorithm as is described in [14], is a minimum spanning tree algorithm

that is greedy by nature. In the Kruskal’s minimum spanning tree algorithm, the edges of

the graph are sorted by their weight. Two separate trees are maintained. One of them is

the growing minimum spanning tree and the other contains the rest of the nodes of the

graph. As long as there are edges that are still part of the graph and not part of the

minimum spanning tree, an edge is added to the minimum spanning tree that is the

minimum in the current graph and whose nodes aren’t part of just one of the sub-graphs

xxxiv

but has one node in the growing tree sub-graph and one of the node in another. The tree is

complete when all the nodes are in the minimum spanning tree sub graph.

Itk::KruskalsMinimumSpanningTreeGraphFilter implements the Kruskal’s minimum

spanning tree Algorithm. Like the itk::PrimMinimumSpanningTreeGraphFilter, it is a

sub class of the InPlaceGraphFilter and accepts as a template parameter an itk::Graph

class type that describes the input and output graph types. The output graph of this class

just returns the original graph with the updated node weights. The filter also has a

GetMinimumSpanningTree () method call that returns a ParentNodeListType which is a

std::map container type and contains the nodes of the minimum spanning tree. The key

type for the std::map is a NodeIdentifierType which is usually an unsigned integer, and

the value type of the std::map is also a NodeIdentifierType. The key type stores the child

node whereas the value type stores the parent of the child node that is part of the

minimum spanning tree of the graph.

3.4.3 Dijkstra’s Shortest Path Algorithm

 xxxv

Dijkstra’s algorithm, as explained in [14], tries to calculate the single shortest path

between two vertices or nodes on a weighted directed graph for the case in which all edge

weights are non-negative. Dijkstra’s algorithm maintains a set S of vertices whose final

shortest path weights from the source s has been determined. The algorithm repeatedly

selects a vertex u which is not in set S with the minimum shortest path estimate, inserts

the vertex u into S, and relaxes or decreases the value of all edges leaving u or for which

u is the source of the edge. A priority queue holds all the vertices that are not in the set S.

keyed by their d values, where d is defined as the minimum distance of a node. Dijkstra’s

algorithm, like Prim’s minimum spanning tree algorithm, is a greedy algorithm as it

chooses the closest or the lightest edge vertex amongst the vertices that are not in S to be

added to S.

Figure 3.6 Dijkstra’s Shortest Path Graph Traits Inheritance Diagram

xxxvi

Itk::DijkstrasShortestPathGraphFilter implements the Dijkstra’s shortest path

algorithm. Like the itk::PrimMinimumSpanningTreeGraphFilter, it is a sub class of the

InPlaceGraphFilter and accepts as a template parameter an itk::Graph class type that

describes the input and output graph types. The output graph of this class just returns the

original graph with the updated node weights. The filter also has a GetShortestPath ()

method call that returns a ParentNodeListType which is a std::map container type and

contains the nodes of the shortest path. The key type for the std::map is a

NodePointerType which is a NodeType pointer, and the value type of the std::map is also

a NodePointerType. The key type stores the child node whereas the value type stores the

parent of the child node that is part of the shortest path of the graph. The

GetDistanceNode () method call returns the distance associated with each edge in the

shortest path. The DistanceNode variable is of the std::map type. The key type of the

std::map is a NodePointerType and the value type is that of an EdgeWeightType which is

defined by itk::GraphTraits. The function call SetRootNode () takes a NodePointerType

that can let the user define any other node as the root or start node of the Dijkstras

Shortest Path. The GetRootNode returns the RootNode as a NodePointerType.

xxxvii

 3.4.4 Depth First Search Graph Algorithm

Depth first search algorithm is a graph search algorithm that explores edges from a

recently discovered vertex v that still has unexplored edges leaving it, [14]. When all of

the edges of a vertex have been explored, the algorithm backtracks to explore edges

leaving the vertex from which the vertex v was discovered. This continues until all the

vertices from the source or root vertex or node are reached. If any vertex is left

undiscovered, then one of them is selected as a new source and the search is repeated

from that source. This process is repeated until all vertices are discovered. The

predecessor sub-graph of a depth first search is therefore defined slightly differently from

that of breath first search algorithm or minimum spanning tree predecessor sub-graphs.

The predecessor sub-graph of a depth first search algorithm does not form just a tree but a

forest and is called a depth first forest that is composed of several depth first trees. Each

xxxviii

vertex has a time when it is discovered and when it is grayed, and a time when it is

finished, and when it is blackened. This technique makes sure that each vertex belongs to

a single tree in the depth first forest. These times are helpful in understanding the

behavior of the depth first search.

Figure 3.7 Depth First Search Graph Traits Inheritance Diagram

Itk::DepthFirstSearchGraphFilter implements the Depth First Search Graph

Algorithm. This class is a sub class of InPlaceGraphFilter and takes an itk::Graph

template class as a parameter for the input and output. The algorithm produces a

ParentNodeListType of std::map container type that can be accessed by the

GetDepthFirstSearch. The key value holds the NodePointerType of the child node and

the value type of the std::map container is a NodePointerType and is the parent node. The

GetDiscoveredTime and the GetFinishedTime are method calls that each returns a

TimeNodeType. TimeNodeType is a std::map container that consists of NodePointerType

as the key type and a double as the value type. SetRootNodeIdentifier allows a user to set

xxxix

the start node of the algorithm to any other node besides the default node. GetTime will

return the total time of the Depth First Search algorithm and it returns a double value.

Figure 3.8 Depth First Search Graph Filter Class Inheritance Diagram

3.4.5 Breadth First Search Graph Algorithm

 xl

 Breadth first search is a simple graph search algorithm, [14]. Given a graph and a

source or root node, breadth-first search systematically explores the edges of the graph to

discover every vertex that is reachable from s. It computes the distance from s to all such

reachable vertices. For any vertex v reachable from s, the path in the breadth-first tree

from s to v corresponds to a “shortest path” from s to v in G, that is, a path containing the

fewest number of edges. The algorithm works on both directed and undirected graph. To

keep track of all the nodes that the algorithm traverses and the progress of the algorithm,

all vertices are colored white, gray and black. All vertices start out white and become

gray and black if the vertex is discovered while traversing the graph. All vertices which

are black have been discovered. Vertices that are gray may have some undiscovered

white vertices and they are a frontier between discovered and undiscovered vertices. Each

discovered vertex has a single parent node as it is discovered at most once.

 xli

Figure 3.9 Breadth First Search Graph Inheritance Diagram

Itk::BreadthFirstSearchGraphFilter implements the Breadth First Search Graph

Algorithm. This class is a sub class of InPlaceGraphFilter and takes an itk::Graph

template class as a parameter for the input and output. The Algorithm produces a

ParentNodeListType of std::map container type that can be accessed by the

GetBreadthFirstSearch. The key value holds the NodePointerType of the child node and

the value type of the std::map container is a NodePointerType and is the parent node.

SetRootNode allows a user to set the start node of the algorithm to anything other node

besides the default node by taking in as a parameter a NodeIdentifierType.

GetDistanceWeight () returns the distance weight, which is double value.

GetDistanceNode () returns a std::map container called DistanceNodeType where the key

type is a NodePointerType and the value type is an EdgeWeightType whose type is

defined by itk::GraphTraits.

 xlii

Figure 3.10 Breadth First Search Graph Filter Inheritance Diagram

3.5 Application of Functors

The Application of Functors, which adopts a visitor design pattern, helps the design

of the graph algorithms to be more flexible. An application of this flexibility is shown by

itk::BaseBreadthFirstSearchFunctor. This class has the basic methods for the distance

calculation per vertex defined when the algorithm traverses the graph and the comparison

function for the heap calculation of the weights of the vertices. The

DefaultBreadthFirstSearchFunctor class defines the logic for those classes. The

BreadthFirstSearchFunctor defines the interfaces that accept an outside function and class

to define the logic for distance calculation and comparison for the heap function. It takes

as a template value, a class that has the distance and comparison functions defined. Then

 xliii

it accepts the definitions of the functions as pointers and those function definitions are

used for the overall logic of the class.

 xliv

CHAPTER 4: EXPERIMENTATION AND APPLICATION

4.1 Experimentation.

In order to test the algorithms first an adjacency matrix was designed with graphs of 7

to 10 nodes each. That adjacency matrix was stored as an itk::Image class with the Pixel

type as an integer and the dimension as 2. A modified ImageToGraphFunctor was used

to determine what would be considered as a node and what was not considered as a node.

Any pixel with the value of 0 was discarded. An integer value of a pixel was assigned as

the Edge weight and the row and column was considered as the nodes. Using this

method, a graph was made and the graph was assigned as the input for all the graph

filters. The output was tested to see if it gave the correct output for the given start node.

In order to test for robustness, the amount of nodes was increased and tested using the

same method as it was used for smaller number of nodes.

The algorithms were then tested using images for robustness and accuracy. An

itk::ImageReader class was used to read in the image and pass it to the

itk::ImageToGraphFilter that also took in a modified ImageToGraphFunctor class that

was application specific. All algorithms managed to process more than 100,000 nodes.

For each of the classes, the examples in [14] were used for the initial test. Later larger

graphs were used and then images. These graphs were either taken from random

examples in books or made by the author. Some adjustments such as memory

management of Standard template library had been made, since stl::map objects occupy

 xlv

too much memory and doesn’t release them upon the end of its scope, unlike other

container architecture. For large images and volumes, that could considerable slow down

the speed. Initially, separate stl::map container classes were designated for the color and

the distance for each node, but it took up too much space and also caused several

segmentation faults. In order to avoid that, an enumeration type field called ColorType

was declared as part of the node structure. Also, the distance field has been replaced for

all the classes by a double field.

For the heap of itk::PrimMinimumSpanningTreeGraphFilter, the stl::set map class

was used. So instead a vector class was used. This design was then used for the Dijkstra’s

shortest path and the Kruskal’s minimum Spanning tree algorithm as well.

 The breadth first search algorithm was tested with its functor class. First, it was tested

with the default class itk::DefaultBreadthFirstSearchFunctor. Then with the sub class

itk::BreadthFirstSearchFunctor was used to test the algorithm for the small examples

and then for larger examples. To test its function pointers, a demo class was defined and

the same test was repeated, to test for accuracy. The demo class contained the same

functionalities as the itk::BreadthFirstSearchFunctor except it was passed on as a

function pointer to the itk::BreadthFirstSearchFunctor class. And it’s function were

passed on as function pointers as well.

 Some of the classes had their stl::map containers replaced by ITK’s definition called

itk::MapContainer for reusability of ITK code and as well as better integration of the

code.

 xlvi

4.2 Application of the Graph Classes: Centerline Extraction.

In order to show the application of an ITK graph class for practical use, the algorithm

to calculate robust centerline extraction for skeletonization has been used. As it has been

discussed before, the skeletonization of an object requires the calculation of the distance

transform of an image and this can either be achieved by using the shortest path graph

algorithm or the minimum spanning tree graph algorithm can achieve this. The graph

contains all the object voxels as vertices or nodes of the graph, and the edges of the graph

are considered as the connection between two adjacent pixels. The edge weights are

inverse ratio of the distance metrics of each pixel. Alternately slight modification of the

breadth first search algorithm may work for the calculation of the centerline as well.

As it has been explained in Chapter 1, as well as Chapter 2, distance transform is an

image processing technique that calculates the relative distance of a voxel of an object

from the boundary voxels of that object.

 The extraction of centerlines of an object is obtained from the skeleton of an object.

Extraction of centerlines is a useful application in medical image analysis and processing,

especially from images of lungs, bronchia, blood vessels and colon. This technique relies

on various features of the segmented image such as the accuracy by which the image was

segmented which is dependent upon the noise level of the images. Distance field based

method was used because of two strong points, one, where outside of the distance field

calculation, centerline extraction algorithm is itself quite efficient, and, secondly, the

centerline is guaranteed to be inside the structure. However, most distance field based

algorithms are dependent upon segmented images as well which needs to be highly

accurate, which can be challenging as most images are noisy and can also have

 xlvii

interfering organ objects. In order to overcome these shortcomings, a Gaussian type

probability model is applied to compute the modified distance field, and after that

standard distance field algorithms are then applied to extract the centerline.

As majority of the images in medical analysis where skeletonization is applicable,

have a tubular structure such as blood vessels; their properties were taken into

consideration while implementing the algorithm. The first property of these images is the

use of the second order derivative that can be defined by a Hessian matrix. The second

property of multi scale analysis, or scale space theory, relates scale to derivatives. In

order to apply probabilistic methods of determining the centerline of a volume object, the

following steps have been taken.

• Volume Preprocessing: The input volume is roughly segmented into object voxels

and background voxels. Region growing or thresholding is used to isolate the

object of interest. An itk::Graph object was created at this stage that held all the

object voxels as nodes that met the threshold criteria. The threshold a criterion

was implemented using a specialized itk::DefaultImageToGraphFunctor called

itk::SkeletonImageToGraphFunctor and passed as a template parameter into the

ImageToGraphFilter class. The ImageToGraphFilter class then outputted the

itk::Graph object.

• Most medical images are band limited which is caused by the nature of their

acquisition and reconstruction and hence it can be concluded that the medical

structures do not have a step boundary but are blurred by a Gaussian factor. The

goal of the application proposed by [10] was to define a probability function

across the object boundary.

xlviii

• The next step is to estimate a constant K, which would help in determining the

probability function of the object voxels that are close to the object boundary. In

order to determine the constant K, with each boundary voxel as a starting point,

the tracking direction is determined which would lead to local maxima. The

tracking direction is usually along the gradient direction. Increase in the gradient

magnitude usually indicates that the gradient is towards the boundary and the

decrease indicates that the gradient is moving away from the boundary. With the

help of the local maxima that is determined by the gradient magnitude and

direction, the constant K is calculated.

• Once the constant K is calculated, the probability values are assigned to the

voxels that are close to the boundary. A starting point is determined to calculate

the probabilities of the boundary voxels using the gradient direction and

magnitude. Decisions regarding the value of the voxels are determined by the two

approximate and tentative values of K, which is, K1 and K2.

• The next step, all the other non-boundary voxels are assigned probabilities for the

remaining voxels. As the pre-segmentation roughly classifies all voxels as either

background or object voxels, these initial values are used as a starting probability

and local neighborhood, usually 26 connected, operations are performed to get

more accurate values. The probabilities are calculated against a background

threshold value and an object threshold value by using the average probability

value. This part of the code of assigning voxels their probability value is handled

by the ImageToGraphFilter and the SkeletonImageToGraphFunctor which

 xlix

assigns the probability value to the voxel as the weight of the node which is

assigned to the voxel.

• The distance fields of all the voxels are calculated. The boundary voxels have

non-zero values as their distance from the boundary value unlike former

algorithms that had applied similar techniques. For a node A and B, the distances

are calculated as:

 DA = DB+ PA D (B, A)

 DB = DA+ PB D (A, B)

 Where, D (B, A) is the distance that was scaled between the points B and A

to the probability of the point being on the boundary. This value is added by

using the SkeletonImageToGraphFunctor and the SetEdgeWeight () function

which is designed to add the edge weight according to the values of PA and PB.

The inverse of the values of these fields are assigned to the voxel edge weights.

• Exact voxel distances are used to assign the distance value to each node. Once the

distance transform has been calculated for each object voxel, the pixel with the

largest distance from boundary is calculated for the initial start node or root node

of the minimum spanning tree that would traverse through the object nodes. The

seed or the root node id is calculated. This id is of the NodeIdentifierType of the

itk::Graph class. The largest geodesic distance from the start node is also noted

which is used to lead towards the root point, via the parent nodes of the Minimum

Spanning Tree container. This was implemented using the

itkBreadthFirstSearchGraphFilter class, which used a heap for the queue to

retrieve the nodes. These nodes are sorted by distance by default. But for the

 l

extraction of the centerline, it was sorted by their node weights, which was equal

to the inverse of the pixels distance from the boundary value. This was set by the

SetNodeWeight () function of itkSkeletonImageToGraphFunctor class. The

breadth first search distance was calculated as it traversed the nodes of the

volume. For the specialized calculation of the distance while traversing the

volume, the itkBreadthFirstSearchFunctor defined the methods for comparing the

weights between two nodes and calculating the distance with the help of a third

class.

The results of the code were tested against the original application for accuracy using

various synthetic and medical datasets. The following images are a demonstration of

the application of the itkBreadthFirstSearchGraphFilter class. Figure 4.1 is a

cylinder that has ending and starting points which are predetermined. Figure 4.2 is an

image of a cylinder that has had its tip detection done dynamically. Figure 4.3 is an

image of an MRT scan with segmentation threshold value of 80.

 li

Figure 4.1 Skeleton of a Cylinder whose end points were predetermined.

 lii

Figure 4.2 Skeleton of a Cylinder whose end points were calculated dynamically.

 liii

Figure 4.3 Skeleton of an MRT data.

 liv

CHAPTER 5: CONCLUSIONS

As, it has been shown the application of Graph Theory and its algorithms in Image

Processing and especially in the area of Medical Image Analysis makes the development

of a Graph Theory library for the ITK library a necessary and useful addition for accurate

and effective processing and analysis of images. The example of the skeleton extraction

has shown that it can be applied for major medical analysis applications. And it can also

be used for general calculations. The implementation has been made flexible in order to

allow it to be applied to varying problems.

Further definitions of functor classes for Prim’s minimum spanning tree, depth first

search, Dijkstra’s shortest path algorithm and Kruskal’s minimum spanning tree will be

designed as future work. Also, designs for the graph traits classes will be made more

generic and user defined. This way the application of all the graph classes will be truly

generic and graph theory can be applied easily for image analysis.

 lv

REFERENCES

[1] Insight Segmentation and Registration (ITK) Software Guide. Luis Ibanez, Will
Schroeder, Lydia Ng, Josh Cates and the Insight Software Consortium.

[2] Graph Cuts and Energy Minimization. Nicholas J. Tustison, Paul A. Yushkevich,
Zhuang Song, and James C. Gee.

[3] Segmentation on Edge Preserving Smoothing Image based on Graph Theory. S.
Chitwong, F. Cheevasuvit, K. Dejhan, S.Mitatha, C. Nokyoo, and T. Paungma, Faculty of
Engineering, King Mongkut’s Institute of Technology Lakrabang, Bangkok 10520,
Thailand.

[4] Fast Euclidean Distance Transform using a Graph-Search Algorithm. Roberto A.
Lotufo, Alexandre A. Falcao, Francisco A. Zampirolli. Faculdade de Engengaria Eletrica
de Computacao, Brasil.

[5] Image Registration with Minimum Spanning Tree Algorithm. Bing Ma, Alfred Hero,
Department of EECS, University of Michigan, Ann Arbor, MI 49109, John Gorman,
ERIM International Ann Arbor , Olivier Michel, ENS-Lyon, France.

[6] Breadth First Search and its Application to Image Processing Problems. Jaime
Silvela, Javier Portillo. IEEE Transactions on Image Processing, Vol. 10, No. 8, August
2001.

[7] Digital Image processing. Rafael C. Gonzalez, Richard E. Woods, Addison Wesley,
1992.

[8] Deformable models in Medical Imaging. Ajit Singh, Dmitry Goldgof, Demetri
Terzopoulos, IEEE Computer Society.

[9] Medical Image Analysis and Simulation. Nicholas Ayache, INRIA-EPIDAURE
Project. Sophia-Antipolis, France.

[10] Robust Centerline Extraction from Tubular Structures in Medical Images. Jianfei
Liu, Kalpathi Subramanian.University of North Carolina, Charlotte, USA.

[11] Flux Driven Automatic Centerline Extraction. Sylvain Bouix, Kaleem Siddiqi, and
Allen Tannenbaum. Harvard Medical School, Georgia Institute of Technology, USA and
McGill University, Canada.

[12] Automatic Centerline Extraction for virtual Colonoscopy. Ming Wan, Zhengrong
Liang, Qi Ke, Licjan Hong, Ingmar Bitter and Arie Kaufman. IEEE Transaction on
medical Imaging, Vol. 21, No, 12, December 2002.

[13] www.itk.org.

 lvi

[14] Introduction to Algorithms. Thomas Cormen, Charles Leiserson, Ronald Rivest and
Clifford Stein. Published by McGraw-Hill.

[15] Introduction to the special section on graph algorithms in computer vision. S.
Dickinson, M. Pelillo, and R. Zabih. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 10,pp. 1049-1052, October 2001.

[16] Curve-Skeleton Applications. N. Cornea, D. Silver and P. Min. Proceedings of IEEE
Visualization 2005, pp. 95-102, 2005.

[17] Boost Graph Library. www.boost.org.

[18] Analyzer Image Processing Tool kit. www.analyzer.org.

 lvii

APPENDIX A

A.1. Insight Segmentation and Registration Tool Kit: Introduction.

Insight Segmentation and Registration Tool Kit (ITK), as explained in [1], is an open

source, object oriented software system for image processing, segmentation and

registration. The Insight Segmentation and Registration Toolkit were funded by the

United States National Library of Medicine of National Institute of Health in 1999. In

2002, the first public release of ITK was made available [14 and 1].

ITK is made of several subsystems. Some design concepts that it utilizes in order to

implement a simple and flexible system are generic programming, smart pointers for

memory management and object factories for adaptable object instantiation, event

management using the command/observer design paradigm, and multithreading support.

For Numeric purposes, ITK uses VXL’s VNL library which are an easy to use C++

wrappers around Netlib Fortran numerical analysis routines. For data representation, ITK

has several classes defined. Two of the principal ones are itk::Image and itk::Mesh.

Classes called Iterators and Containers are used to traverse and hold the data. ITK also

has classes called Filters that are organized into Dataflow pipelines. These pipelines

maintain state and therefore execute only when necessary. Pipeline also supports

multithreading and is capable of streaming. The Data Processing Pipeline consists of

sources, filters that initiate the pipeline and mappers, filters that terminate the pipeline.

The standard example for source and mapper would be readers and writers. A reader

class takes in input data usually from a file, and writers output data from the pipeline onto

either the screen or another image class or file. In ITK, geometric objects are represented

 lviii

using the spatial objects hierarchy. These classes usually are used for modeling

anatomical structures. They use a common basic interface for representing regions of

space in a variety of different ways. For example, mesh structures may be used as the

underlying representation scheme. Spatial objects are a natural data structure for

communicating the results of segmentation methods and for introducing anatomical

priors in both segmentation and registration methods, as it has been described in [1].

ITK supports a framework for four types of Registrations: Image, Multi-resolution,

PDE-Based and Finite Element method (FEM) registration. It also supports a framework

for general FEM problems in particular non-rigid registration. This package also includes

mesh definition (such as nodes and elements), loads and boundary conditions. Level set

framework is another set of classes used for creating filters to solve partial differentiation

equations on images using iterative, finite difference update scheme. The framework

consists of finite difference solvers including a sparse level set solver and several specific

subclasses including threshold Canny and Laplace’s algorithm based Methods.

ITK used a unique and powerful system for producing interfaces (i.e. “wrappers”) to

interpreted languages such as TCL and Python. It also includes tools such as GCC_XML

to produce an XML description of arbitrarily complex C++ code. ITK also has several

auxiliary subsystems such as calculators which are classes that perform specialized

operations in support filters, partial DICOM parser and interfaces to the Visualization

Toolkit (VTK) system [1].

 lix

A.2. Generic Programming.

Generic programming is a method of organizing libraries consisting of generic or

reusable software components. Generic Programming usually consist of containers that

hold data, iterators to access the data and generic algorithms that use containers and

iterators to create efficient fundamental algorithms such as sorting. It is implemented in

C++ using template programming mechanism and the use of the STL (Standard template

Library. C++ template programming is a programming technique which allows users to

write software in terms of one or more unknown types T. A user of the software defines

the type T in order to create executable code. The T may be a native type such as float or

int or T may be a user defined type (e.g. class). At compile time the compiler makes sure

that the templated types are compatible with the instantiated code and that the types are

supported by the necessary methods and operators.

The advantage of using generic programming for ITK is that an almost unlimited

variety of data types are supported simply by defining the appropriate template types. For

example, in ITK it is possible to create images consisting of almost any type of pixel. The

type resolution is done during compile time, so the compiler can optimize the code to

deliver maximal performance. The disadvantage of generic programming is that many

compilers usually do not support this high level of abstraction and hence cannot compile

ITK. Although some compilers may support generic programming, they may produce

undecipherable code even for some of the simplest of errors.

 lx

A.3. Include files and Class definitions

Each class in ITK is defined by two files: a header file ending with .h and an

implementation file- .cxx if a non-templated class, and a .txx if a templated class. The

header files contain class declarations.

A.4. Object Factories

In ITK, most of the classes are instantiated through an object factory mechanism.

Instances of ITK classes are created using the static class New () method. The class’s

constructor and destructor are protected and hence are not generally possible to construct

ITK classes on the heap.

The object factory allows run time instantiation of classes by registering one or more

factories with itk::ObjectfactoryBase. These registered factories support the method

CreateInstance (class name) which takes as input the name of a class to create. The

factory can choose to create the class based on a number of factors including the

computer system configuration and environment variables. By using the object factory, it

is possible to replace a particular ITK Filter class with a custom class. Usually the ITK

object factories are used by the ITK input/output (IO) classes.

A.5. Smart pointers.

ITK implements memory management via reference counting. A count of the

number of references to each instance is kept. When the reference count is zero, the

 lxi

object destroys itself. Reference counting deletes memory immediately, unlike garbage

collection which does it at random times.

Reference counting is implemented through Register ()/Delete () member function

interface. All instances of an ITK object have a Register () method invoked in them by

any other object that references them. The Register () function increments the object

instance’s reference count. When the reference to the object is removed a Delete ()

method is invoked on the instance that decrements the reference count. When the

reference count reaches the count of zero, the object instance is destroyed. This whole

protocol is implemented in a helper class called itk::SmartPointer. Although it acts like a

normal pointer it also updates the reference count by performing Register () when

referring to an instance. When an instance is de-referenced, UnRegister () is called. The

Smart Pointer can be allocated on the program stack and is automatically deleted when

the scope of the method in which the Smart Pointer was declared in, is closed.

A.6. Error handling and Exceptions

ITK uses exception handling to manage errors during program execution. Exception

handling is a standard part of the C++ language and generally takes the form of a try and

catch statement where the catch statement has an argument of type Exception. In ITK the

exception class used to catch errors is itk::ExceptionObject. Itk::ExceptionObject may be

sub-classed to customize exception handling.

 lxii

A.7. Event handling

ITK also supports Event Handling using the Subject/Observer design pattern where

the objects indicate that they are watching for a particular event- invoked by a particular

instance that they are watching. Objects that are registered with the event are notified

when the event occurs. The notification is usually a command such as a callback function

or method invocation that is specified during the registration process. All registered

observers are notified by the invocation of the Command::Execute () method.

A.8. Multi Threading

ITK supports a multithreading by implementing a high level design abstraction. This

design provides portable multithreading and hides the complexity of differing thread

implementations on the many systems supported by ITK. The Class that implements

Multithreading in ITK is called itk::MultiThreader. Multithreading is used by an

algorithm during its execution phase. A Multi-thread class can be used to execute a single

method on multiple threads, or to specify a method per thread.

A.9. Data Representation.

There are two principal types of data represented in ITK. They are images and

meshes. In ITK, they are represented by the classes, itk::Image and itk::Mesh. Data

 lxiii

classes in ITK are all sub classed from the object class called itk::DataObject. These data

objects can be passed around in a system and can participate in a data flow pipeline.

A.9.1. Image representation in Insight Segmentation and Registration Tool Kit

Itk::Image represents an n dimensional, regular sampling of data. The sampling

direction is parallel to each of the coordinate axes, and the origin of the sampling, inter-

pixel spacing, and the number of samples in each direction (i.e., image dimension) can be

specified.

A sample or pixel can be arbitrary; a template parameter TPixel specifies the type

upon template instantiation. Along with the pixel type, the dimensionality of the image

must also be specified during the instantiation of the image class. One factor of the pixel

type that must be taken into consideration is that it must support certain operations such

as addition and subtraction. Such a factor is necessary for the code to run in all

perceivable cases. C++ simple types such as integer and float or pre-defined pixel types

are usually used.

Another concept of data representation that is important amongst ITK concepts is

Region. Region is rectangular and continuous pieces if an image. They are used to

specify which part of an image to process or which part to hold in memory [1].

There are three types of regions:

• LargestPossibleRegion – the image in its entirety.

 lxiv

• BufferedRegion – the part of the image that is stored in the memory.

• RequestedRegion – the part of the region requested by a filter or other class when

operating on the image.

A.8.2. Mesh representation in Insight Segmentation and Registration Tool Kit.

Itk::Mesh class represents an n- dimensional, unstructured grid. The topology of the

mesh is represented by a set of cells defined by a type and connectivity list. The

connectivity list references points. These points constitute the n-dimensional geometry of

a mesh in combination with associated cell interpolation functions.

The mesh is defined in terms of three template parameters:

• A pixel type associated with the points, cells, and cell boundaries;

• The dimension of the points (which in turn limits the maximum dimension of the

cells);

• A “mesh traits” template parameter that specifies the types of the containers and

identifiers used to access the points, cells and boundaries.

Mesh is a sub class of itk::PointSet. The PointSet class allows a user to represent data

either as point clouds or randomly distributed landmarks, etc. The PointSet class has no

associated topology [1].

 lxv

A.10. Data Pipeline.

Data Processing Pipeline consists of data object and Process object interaction. Data

Objects are usually Image and Mesh. Process Objects consist of sources, filter objects or

mappers. Process Objects operate on data objects and may produce new data objects.

Sources (such as readers) produce data, filter objects take in data and process it to

produce new data, and mappers accept data for output either to a file or some other

system[1 and 13].

A.11. Basic software design for ProcessObject in ITK.

Some of the key design aspects of an ITK filter are, as it has been described in Chapter 2

of [1]:

• They all inherit the properties of itk::ProcessObject which in turn is inherited

from itk::Object.

Figure A.1. ITK Image Filter Data Pipeline

 lxvi

• A base class which inherits itk::ProcessObject called

itk::ImageToImageFilter is used for most advanced filters. The

itk::ImageToImageFilter takes in as a template an Image class description that

describes the input and another one that describes the output.

• The base class ProcessObject describes the methods SetInput (), GetInput (),

SetOutput () and GetOutput (). These methods usually take in DataObject sub

classes such as itk::Image and itk::Mesh. The sub classes of ProcessObject

describe the behavior of the filter by defining the virtual classes declared by

the base class.

• All filters are part of the namespace itk.

• All private variable members are accessed using macros described by ITK.

These macros are called itkSetMacro () and itkGetMacro (). The first

argument of these macros accepts the variable name while the second

argument accepts the type of the variable. The macros however fail to work

for any data type that is of a templated array type.

• The typedef definitions of ITK for base class and the classes own data type

definition are usually declared public in order to allow users of the class to

definition and describe their own data types for their classes.

• One of the pre defined methods of ProcessObject is called GenerateData()

which is declared protected in a filter class. The filter algorithm is defined in

this method.

 lxvii

• Update function defined in ProcessObject is the only way a user can run the

algorithm contained in the GenerateData () method of a class.

• ITK restricts the number of algorithms that can be supported by a single filter

to one.

• A composite class can be built provided it is a pipeline and not three distinct

algorithms.

There are several types of macros and traits that need to be part of the definition of an

ITK filter.

• ItkNewMacro: This macro defines the New () function of an ITK filter. This

function is needed in order to instantiate an instance of the filter class in ITK.

• ItkSetMacro and itkGetMacro are the macros that define the storage and

retrieval of private data types of the filter class.

• itkTypeMacro: Notifies the compiler about the association of the base class

and the sub class.

• SmartPointer: A pointer description of the filter class is made which allows a

user of the filter to declare a pointer variable of the filter class. For example,

typedef SmartPointer<Self> Pointer;
 typedef SmartPointer<const Self> ConstPointer;

lxviii

 Here, Self is a typedef of the filter class’s name.

• PrintSelf () is a method declared within a filter class that may be defined in

order to know the state of the variables defined by the class.

A.12. Template programming in C++.

Some of the concepts that involve template programming in C++ are as follows:

• Every class starts with the template word. For example,

• typedef is an important keyword in template programming. It allows users

who define sub classes to maintain constancy between base class and sub

classes.

• Template class inheritance is different from usual inheritance. Export is used

before template to let the subclasses use the inline functions of the base class.

ITK has its own ITK_EXPORT that has the same functionality as export in

ANSI C++.

• Subclass template parameters must be used to define the base class unless the

base class has a default type defined for any of its parameters. All the base

class parameters must be mentioned while defining the sub class.

typename is another keyword that is a part of generic programming. typename is

used to enforce a type defined by the class or its sub class on a variable or for defining a

template<class TPixel, class TSize>.

 lxix

user-defined type. It indicates to the compiler that a user is aware of a variable’s type but

is not sure what kind and where it is defined exactly

 A.13. Design of ITK Image inheritance and Data Processing Pipeline.

The itk::Image and itk::ImageToImageFilter which are two important class definition

of the ITK data processing pipeline constitutes the following inheritance specification.

Both DataObject and ProcessObject are sub-classed from itk::Object class. The

itk::DataObject class is in turn sub classed to itk::ImageBase which is sub classed by

itk::Image. Itk::ProcessObject in turn is inherited by itk::ImageSource which is inherited

by itk::ImageToImageFilter [13].

itk::DataObject is the base class that is inherited by all classes that are used to

represent and provide access to data. ITK has its classes, itk::Image and itk::Mesh, that

Figure A.2. Image DataObject and ProcessObject inheritence diagram(taken
from the ITK Getting started series)

 lxx

are inherited from this base class. Itk::DataObject is an inherited class of itk::Object

which is the base class for all factory object classes in ITK. It defines the input and output

of a DataObject class, and also the regions within the data object [1 and 13].

ImageBase is the base class for the templated Image classes. ImageBase is templated

over the dimension of the image. It provides the API and the variables that depend solely

on the dimension of the image. ImageBase does not store the image or pixel data. That is

done by its sub-classes such as itk::Image [1 and 13].

Itk::Image is a templated n dimensional class. Images are templated over a pixel type

and a dimension. The container that stores the pixel data is ImportImageContainer.

Within the Container, images are modeled as arrays, defined by a start index and a size.

Pixels can be accessed using SetPixel () and GetPixel () methods or can be accessed via

iterators. Begin () creates an Iterator that can walk a specified region of a buffer. The data

in an image is arranged in a 1D array as slice then row than column with the column

index varying the most rapidly. The Index type reverses the order so that with Index [0] =

column, Index [1] = row, Index [2] = slice.

Itk::ProcessObject is the base class for all the filters. It defines the filter input and

output interfaces and the interface for GenerateData and UpdateData.

Itk::ImageSource is the base class for all process objects that output image data.

Specifically, this class defines the GetOutput () method that returns a pointer to the

output image. The class also defines some internal private data members that are used to

manage streaming of data. Memory management in itk::ImageSource is slightly different

than that of itk::ProcessObject. While in ProcessObject the bulk data associated with the

output is always released with their output prior to the GenerateData() being called, in

 lxxi

itk::ImageSource, the default is not to release the bulk data in case that particular

memory block is large enough to hold the new output values. This avoids unnecessary

de-allocation sequences. ImageSource can be made to have a similar memory

management behavior such as that of ProcessObject by calling the

ProcessObject::ReleaseDataBeforeUpdateFlagOn () [1].

Itk::ImageToImageFilter is the base class for all ITK filters that take in an image type

as inputs and outputs. This class specifically defines SetInput (). It also provides

infrastructure for supporting multithreaded processing of images. If a filter provides

implementation of GenerateData (), a single threaded implementation of the algorithm is

handled. If on the other hand, ThreadedGenerateData () is called, then the image is

divided into number of pieces and a number of threads are spawned and each thread will

handle ThreadedGenerateData () separately. This class also provides the implementation

of GenerateInputRequestedRegion (). The base assumption at this point in the hierarchy

is that a process object would ask for the largest possible region on input in order to

produce any output.

The typical ITK filter pipeline execution performs the following important functions

along with other functions:

Figure A.3. Relationship between
ProcessObject and DataObject

 lxxii

• It determines which filters in the pipeline need to be executed.

• Initializes the filters output data objects and prepares them for new data. It also

determines how much memory each filter must allocate for its output and

allocates that memory for the filter.

• The execution process determines how much data a filter must process in order to

produce an output of sufficient size for downstream filters; it also takes into

account any limits on memory or special filter requirements. Other factors include

the size of the data processing kernels, which affect how much data input data

(extra padding) is required.

• It subdivides data into sub-pieces for multithreading.

• It may free or release output data if filters no longer need it to compute, and the

user requests that data be released.

Figure A.4. Data Execution Pipeline
A pipeline execution is initiated when a process object receives the

ProcessObject::Update () method invocation. This method is simply delegated to the

lxxiii

output of the filter, invoking the DataObject::Update () method. This behavior is typical

between ProcessObject and DataObject. In this way data request from the pipeline is

propagated upstream, initiating data flow that returns downstream. The

DataObject::Update () method in turn invokes three other methods:

• DataObject::UpdateOutputInformation()

• DataObject::PropagateRequestedRegion()

• DataObject::UpdateOutputData ()

The DataObject::UpdateOutputInformation () method determines the pipeline modified

time. It may set the RequestedRegion and the LargestPossibleRegion depending on how the

filters are configured. The UpdateOutputInformation () propagates upstream through the

entire pipeline and terminates at the sources.

The DataObject::PropagateRequestedRegion () call propagates upwards to satisfy a

data request. In a typical application this request is usually the LargestPossibleRegion of

the output. The function of this method is, given a request for data; propagate upstream

configuring the filter’s input and output process object’s to the correct size. Eventually, this

means configuring the Buffered Region, that is the amount of data actually allocated.

DataObject::UpdateOutputData () is the final method as a result of the Update method

call. The purpose of this method is to determine whether a particular filter needs to execute

in order to bring its output up to date (A filter executes when it’s GenerateData () method

is invoked.) Filter execution occurs when a) the filter is modified as a result of modifying

an instance variable; b) the input to the filter changes; c) the input data has been released;

or d) an invalid RequestedRegion was set previously and the filter did not produce data,

Filters execute in order in the downstream direction. Once a filter executes, all filters

lxxiv

downstream of it must also execute. This method is delegated to the DataObject’s source

only if the DataObject needs to be updated.

