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Abstract. Extraction of centerlines is useful in interactive navigation and analysis
of objects in medical images, such as the lung, bronchia, blood vessels, and colon.
Given the noise and other imaging artifacts that are present in medical images, it is
crucial to use robust algorithms that are (1) accurate, (2) noise tolerant, (3) compu-
tationally efficient, and (4) preferably do not require an accurate segmentation. We
propose a new centerline extraction method that employs a Gaussian type proba-
bility model to estimate the boundaries of medical objects. The model is computed
using an integration of the image gradient field. Probabilities assigned to boundary
voxels are then used to compute a more robust distance field, that is less sensitive to
noise. Distance field algorithms are then applied to extract the centerline. Noise tol-
erance of our method is demonstrated by adding Gaussian, Poisson and Rician noise
to these datasets, and comparing results to traditional distance field based methods.
Accuracy of our method was measured using two datasets with known centerlines,
(1) a synthetically generated sinusoidally varying cylindrical dataset, and (2) a radi-
ologist supervised segmented head MRT angiography dataset. Average errors for
the cylinder dataset using our method was 0.5-0.8 voxels vs. 0.7-2.0 voxels us-
ing the traditional distance transform method; for the MRT dataset, it was 0.5-0.7
voxels vs 2.0-3.0 voxels for the traditional method. Additionally, experiments with
six datasets were performed, (1) a second head MRT angiography dataset, (2) an
aneurysm dataset, and (3) four colon datasets. Results of our approach illustrate the
robustness of our centerline extraction method, in terms of the smoothness as well
as reduced artifacts, such as spurious branches. Finally, the stability of our center-
line is evaluated by measuring its sensitiveness to initialization and segmentation
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parameters (on the head MRT dataset), and found to vary on the average between
0.2-0.4 voxels. Running times of our algorithm are on the order of 1-7 minutes for
datasets ranging from 256 x 256 x 256 to 409 x 409 x 219 voxels.

1 Introduction

The extraction of centerlines is useful in routine medical image analysis tasks, such
as navigating the interiors of colon, blood vessels, lungs and other tubular structures.
Centerlines are a special case of medial surfaces (or skeletons) that have been stud-
ied extensively. Review articles on these and their related algorithms have recently
appeared|[[]], that have precise definitions and requirements[2] of these structures for
a variety of applications that span navigation, image/volume registration, animation,
morphing, recognition and retrieval.

Our focus in this work is toward robust and accurate centerline extraction from
medical images and volumes, especially within noisy environments. The approach
we present does not require an accurate segmentation of the object; we estimate
the boundary probabilistically using an integration of the image gradient field. The
computed probability field is then used to build a modified distance field, after which
we extract the object centerline using existing distance field based algorithms. We
demonstrate the power and usefulness of our model by testing it on a set of syn-
thetically generated volumes, as well as a number of publicly available medical
imaging datasets. These experiments were done by adding significant amounts of
Gaussian, Poisson and Rician noise to the datasets, as these have been shown to be
relevant to medical imaging data from CT, MRI[29]]. Accuracy is quantified using
both synthetic models, and an MRT angiography dataset with a radiologist super-
vised segmentation. We also evaluate our technique by comparison to traditional
distance field methods. We have successfully tested this approach on medical imag-
ing datasets from blood vessel geometry in the brain, and CT datasets of the human
colon. We also have used interactive tools to qualitatively verify the accuracy of our
centerline in the medical datasets, in the absence of an accurate segmentation.

We will begin with a look at centerline extraction methods that are directly rel-
evant to the work presented here, specifically those based on distance fields and
image characteristics, and briefly mention other methods. We will then develop our
probabilistic distance field based centerline extraction method and present experi-
mental results.

Distance Field Methods. These methods use a distance function, which is a signed
function from each data point, and most often, referring to the distance-to-closest
surface (or distance to boundary, DFB). Such distant maps have been used to ac-
curately represent binary (or segmented) volumes to control aliasing artifacts[4],
extract skeletons [5]]. In centerline extraction algorithms, an additional distance,
distance-from-source, DFS, which represents the distance from a source point has
also been employed. Various distance metrics have been used in these algorithms,
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such as 1-2-3 metric[6]], 3-4-5 chamfer metric[7]], or 10-14-17[§]]. Exact voxel dis-
tances (1 — /2 —+/3), assuming unit cube voxels) have also been used[2].

A number of researchers have used a combination of distance fields and Dijsk-
tra’s algorithms (shortest path, minimum spanning tree) in order to extract the object
centerline; the primary idea in these schemes is to transform the object voxels (iden-
tified in a preprocessing step) into a weighted graph, with the weights being defined
by the inverse of the computed distance metric. Then Dijkstra’s algorithm is applied
to find the shortest path between specified end points. Chen et al.[8] used this ap-
proach but modify the shortest path voxels to the maximal DFB voxels orthogonal to
the path, while Zhou[[6] chooses among voxel clusters with the same DFS distance.
Bitter et al.[10} O] use a heuristic that combines the DFS and the DFB distances,
with the latter being considered a penalty aimed at discouraging the “hugging cor-
ner” problem, that is typical of shortest path based approaches. Finally, Wan et al.[2]
propose a method that also uses both DFS and DFB distances, but emphasizes the
latter to keep the centerline close to the center of the tubular structure. They also
use a priority heap which always keeps the voxels close to the center at the top of
the heap.

There are two strengths to distance field based methods, (1) outside of the dis-
tance field calculation, centerline extraction algorithm is itself quite efficient, and,
(2) the centerline is guaranteed to be inside the structure. However, all of these
methods begin with a binary image, and for medical images, this means an accu-
rately segmented image. This, in of itself, is a significant task, given that the original
images can be considerably noisy (depending on their modality) and of poor con-
trast, and the presence of interfering organs can make this task even harder. In other
words, the centerline is usually highly sensitive to the accuracy of the boundary lo-
cation; it is this fact that our proposed method attempts to overcome by (1) using a
better boundary estimate, and (2) using smoothing and object scale towards a more
robust method.

Image Characteristics. Methods in this category have been used in analyzing tubu-
lar structures in medical images, in particular, blood vessel geometry. They are based
on two properties of images, (1) use of second order derivatives, and (2) multi-scale
analysis. Second order structure of an image is defined by the Hessian matrix, for
instance, from a Taylor series expansion about a point X,

I(x0+5x0,6) %I(xo,G)+5ngo7g+5xgH0765x0 (1)

where Ag s and Hy ¢ are the gradient and Hessian of the image at x¢ at a scale s. Sec-
ondly, scale space theory[[11} relates scale to derivatives, which can be defined
as convolution with derivatives of Gaussians:

%I(x, s) = o"I(x) %G(x, o) (2)
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where G is a Gaussian with zero mean and deviation of ¢. Parameter 7, introduced
by Lindeberg[[13] helps define normalized derivatives and provides the intuition for
the use of scale in analyzing image structures.

In [14]], the Hessian is used in detecting blood vessels from angiographic images.
Eigen vectors of the Hessian matrix are used to determine the principal directions of
the vessel structure; in particular, the direction with the smallest eigen value points
along the vessel axis, while the remaining two (orthogonal) direction vectors are
along the vessel cross-section. This forms the basis for vessel detection, which when
combined with multi-scale, can handle vessels of varying cross-section, given the
results of Eq.[2] that relate scale to boundary position.

Aylward [13] formulated these ideas in proposing a centerline extraction method
for blood vessel structures. Their approach was to identify and track ridges within
angiographic images. Their method uses dynamic scale enhancements to handle
changes in vessel geometry, as well as perform well in the presence of noise. Wink et
al.[16] also use a multi-scale representation, however, they convert their multiscale
“centeredness” measure to a cost (by choosing the largest response across a range
of scales) and extract the centerline by computing the minimum cost path using
Dijkstra’s algorithm. Potential to cope with severe stenoses was illustrated. Finally,
ridge analysis in images has also been studied in detail by Eberly at al.[17, 18], and
tubular structure detection [19].

Computing second order derivatives followed by eigen value analysis can be ex-
pensive, especially for very large medical objects. Nevertheless, secondary structure
properties provide useful information for image analysis and we are looking into ap-
proaches to minimize computation and make these techniques more scalable.

Other Methods. A number of other methods have been proposed, including those
based on field functions to extract skeletons. Examples of these include the use of
potential functions[20] and more recently, using topological characteristics derived
from repulsive force fields[21]]. Radial basis functions have also been used.
Some of these methods work in continuous space, which can potentially move the
centerline out of the object, however, they are more flexible, smoother and less sen-
sitive to noise, due to averaging effects. Our proposed method also takes advantage
of this property, as we integrate over a smooth gradient field of the image. Another
class of algorithms is based on thinning[23]; in general, these algorithms are quite
expensive, but they are indeed quite robust.

2 Methods

2.1 Volume Preprocessing

The input volume is first roughly segmented into object voxels and background vox-
els. In our experiments, we have used thresholding or region growing to isolate the
object of interest. However, other more sophisticated operators might be necessary
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Fig. 1 (a) Step edge: ideal boundary, (b)Change in gradient magnitude (approximated by a
Gaussian), (c) integral of gradient: blurred edge (also error function)

for complex datasets, several examples of which can be found in [24], and which
we have also used to test our methodology.

2.2 Boundary Model

Medical images, by their nature of acquisition and reconstruction are bandlimited;
thus, boundaries separating medical structures can be assumed to be blurred by a
Gaussian. Fig. [l (reproduced from [23]) illustrates a step edge and its blurring by
a Gaussian. While Kindlmann [23] used this model to build transfer functions, our
goal here is to define a probability function across the object boundary. Specifically,
we define the derivative of the image intensity function f(x), or the gradient, as

F) = X o3 3)

- \2rno

where f’(x) is centered around the point x, K is a normalizing constant and & rep-
resents the deviation. Integrating Eq. 3 results in the familiar blurred boundary, as
shown in Fig.[Ik.

2.3 Normalizing the Boundary Probability Model
Our next step is to estimate the constant K, in order to determine the probabil-

ity function for voxels close to the boundary. We first evaluate Eq.[3] at x = 0 and
x==o0,

O p— (4)
2no
/ R K -1
f(O')— ( G)*mo_e (5)
Thus
(@) _f=o) ©
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Consider Fig. [Tb. f/(0) occurs when the gradient magnitude attains a maximum,
with (—0,0) on either side of it. We use the following procedure to estimate K
with respect to each boundary voxel:

1.

Starting from each boundary voxel, determine the tracking direction (along the
gradient direction, g or —g) that leads to the local maximum; increasing gradi-
ent magnitude leads toward the boundary and decreasing magnitude leads away
from it.

. Determine the local maxima of the gradient magnitude by moving along the gra-

dient direction, g or —g

. Beginning from position x = 0, move along g or —g to determine —¢ and ©

respectively. By using Eqn.[6l we can stop when the ratio reaches approximately
-1/2
e /-

. We know that 0 X
/ f (x)dx = / f(x)dx= = (7
oo 0 2
which is approximately
0 o K
[ rwde= [ =3 (8)
-0 0 2

as we are using K to make the area under the Gaussian equal to 1 (in order to
convert it into a probability density function). The above equation thus gives us
two possible estimates for K, denoted K1, K». Due to the fact that we are operating
in a discrete lattice and the approximations involved in the boundary model, we
cannot expect a perfectly symmetric Gaussian shaped variation of gradient across

x=—¢ 0 X2= G x1=_g 0 X2= ¢

(@ (b)

x1=_g X2= ¢

(c) (d)

Fig. 2 (a) K| < K;: shaded area on the right is larger, (b) K| > Kj: shaded area on the left is
larger, (c,d) Only K or K3 can be estimated
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the object boundary. In other words, the points at which —o and ¢ are calculated
will usually be at differing distances from x = 0. Choose K = MIN (K, K>).
5. There are 5 possible cases:

2.4

o Kj < Kp: Thisis illustrated in Fig.2h. The shaded area (integral of the gra-
dient) on the right is smaller, which is directly proportional to the estimate
of K 1

o Kj > Kp: Similarly, as shown in Fig. Bb, the shaded area on the left is
larger.

o K cannot be determined (Case 3) and K, cannot be determined (Case 4):
These two cases can happen, if there are interfering structures that prevent
calculating one of the estimates (detected by a sudden increase in gradient
integral). In this case, we choose the computed estimate, K| or K.

o Neither K| nor K, can be estimated: This is rare, as in this case, the bound-
ary is poorly defined and the presegmentation has performed a poor job
of obtaining the rough object boundary.

Probability Assignment for Near-Boundary Points

Once the normalizing constant K has been determined, our next step is to assign
probability values to voxels close to the boundary. For this, we need to determine
a starting point prior to computing probabilities. The probability is the integral of
the gradient (area under the Gaussian) divided (normalized) by K. The probability
will be 0.5 at the peak (x = 0) and decrease or increase on either side of estimated
boundary (toward the background/object respectively). Assume that the voxel posi-
tions corresponding to —0, ¢ are respectively x1,x,. We again need to treat each of
the five cases above:

[¢]

Kj < K5 In this case, we choose K = K7, and the starting point is x = xy, cor-
responding to —o, as shown in Fig.[2h. Probability P(x;) = 0.0, and we move
along g or —g toward the object boundary (increasing gradient magnitude),
where P(0) = 0.5. At each step, the probability is computed and assigned to
the corresponding voxel. Process ends when the probability reaches 1.

K| > K: In this case (Fig.Pb), K = K; and the starting point is x = x, corre-
sponding to o, with P(x;) = 1.0. In this case, we move toward x;. However in
this case, the integrals are decreased (as the probability is decreasing) at each
step. The process terminates at a point )c/1 such that x| < )c/1 , with P(x/l) =0.
K estimate only: Here K = K, K, cannot be estimated, and x, is unknown.
In this case (Fig.2k), we begin with P(x;) = 0 and continue assigning voxel
probabilities until the process terminates at x,, prior to x = ©.

K> estimate only: Here K = K5, K| cannot be estimated, and x; is unknown.
In this case (Fig.2H), we begin with P(x;) = 1 and continue assigning voxel
probabilities until the process terminates at x/l , prior to x = —0O.
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o Neither K; or K is available: In this case, we do nothing. Its quite possible
voxels affected by this boundary voxel might be assigned by a neighboring
boundary voxel at a later point.

2.5 Probability Assignment of Non-boundary Points

The previous procedure computes the probabilities for the boundary voxels and vox-
els close to the boundary. We also need to assign probabilities for the remaining
voxels, so as to facilitate the distance field computation (as described the follow-
ing sections). Note that our presegmentation roughly classified all voxels as either
background or object voxels. We begin with this assignment (0 or 1) as an initial
probability value and proceed to perform local neighborhood operations to correct
these values, where necessary, as follows:

o For each unassigned voxel, v, on the object, compute the average probabil-
ity, P,y within its 26 connected neighborhood. P, is thresholded against a
background threshold 7},g,,,4, and an object threshold, T,y ;.

o 07 if Pavg < Tbgrnd
Plv) = { 1, if Pag > Top; 2

o If (Tygrna < Pavg < T,p), the voxel’s probability is determined by looking at
a fixed number of local neighbors (we use 2) along the gradient direction on
either side of the voxel.

2.6 Distance Field Construction

As mentioned earlier, the principal goal of building the probability function is to
have a more accurate and continuous description of the boundary, and encoding the
uncertainty associated with it. Specifically, at the boundary, the probability is close
to 0.5 (equally likely to be object or background), points leading towards the interior
of the object tend towards 1.0, while points leading away from the object (and into
the background) tend towards 0.0. We use these probabilities in building a distance
field that is more accurate and of higher precision. In particular, the boundary vox-
els will have non-zero distances, in contrast to traditional distance fields where all
distances at the boundary start out with zero.

Fig. Bl displays colored distance field images in one slice of a synthetically gen-
erated dataset (shown in Fig.[7] with added Gaussian noise, ¢ = 40); intensity vari-
ation from blue to red represents increasing distance value. Left image illustrates
the distance field using the traditional distance transform, while the right image
shows the slice using the probabilistic distance transform. Notice that the reddish
hues (large distances close to the centerline) are more continuous in the right image,
while the distance field is highly corrupted in the left image, due to the noise. This
in turn affects the centerline, as can been from a simple example in Fig. |6
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Fig. 3 Comparison of Distance Fields:Center slice of distance volume where color map from
blue to red represents increasing distance. Left:Using traditional distance transform. Right:
Using probabilistic distance transform.

Fig. 4 Modified distance P,
field computation. B
P
A

The use of the probability function makes distance computation and propagation
different from traditional distance fields. Consider Fig.[d P, and P represent the
probabilities assigned to points A and B. We compute the distances D4 and Dp, from
voxels B and A respectively are calculated as follows:

Dy = Dp+PyD(B,A) (10)
Dg = D4+ P3D(A,B) (11)

In other words, the distance D4 from another voxel B is given by the sum of the
stored distance Dp at B and the distance between A and B weighted by the estimated
boundary probability of B. Thus, voxels with smaller probabilities (partially in the
background) have a smaller contribution. This is a key factor to the stability of the
centerline, especially in the context of a noisy boundary. Note that the traditional
distance field algorithm assumes Py = Pg = 1.
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Using the above formulation, we compute the distance field using the approach
of [5]]. In our implementation, we use exact voxel distances, (1, \/E, V3 ) for isotropic
volumes, or the actual voxel distances based on the voxel size.

2.7 Centerline Extraction

Once the distance field has been computed, we can now extract the centerline from
the volume. We use a slight variant of the algorithm proposed by Wan et al. .
Currently we use the voxel with the largest DFB (distance from boundary) as the
root of the minimum spanning tree (MST) (as detailed in [2]]) in the centerline ex-
traction algorithm. We also keep track of the largest geodesic distance from this
starting point (or DFS), which is then used to lead toward the root point, via the
chain of links built during the MST construction.

3 Results

In order to evaluate the accuracy, stability and robustness of our algorithm, we
have tested our centerline extraction method on both synthetic as well as publicly
available medical imaging datasets. Accuracy was measured quantitatively on two
datasets whose exact centerline is known, (1) a synthetic dataset (Fig. [Z), and, (2)
a radiologist supervised segmentation of a a head MRT dataset (Fig. 8l This is fol-
lowed by experiments on six medical imaging datasets with added noise to illustrate
the robustness of our method. Finally, we illustrate the stability of the extracted cen-
terline in response to variations in initialization segmentation parameters. In all of
these experiments, we compare both quantitatively and qualitatively our probabilis-
tic centerline extraction method to traditional distance transform method.

3.1 Implementation

Our centerline extraction algorithm has been implemented in C++ on Linux work-
stations. We have used the Insight toolkit (ITK)[26] for some of the image process-
ing operations and the Visualization Toolkit(VTK) [27] for displaying the results.
All interaction is provided using the Fast and Light Toolkit (FLTK).

3.2 Noise Generation

There are three common types of white noise observed in medical images: Gaussian,
Poisson, and Rician [29]]. We assume the noise is uncorrelated[30]. Among these

' We had to slightly modify this algorithm as the flowchart seemed to have some missing
conditions.

2 ITK, VTK and FLTK are open source toolkits that run across a number of different plat-
forms.
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Fig. 5 Noisy Disk images with Gaussian, Poisson, and Rician noise and their associated dis-
tributions. Left column::Gaussian noise with u = 0,0 = 10, Middle column: Poisson noise
with o = 10, Right column: Rician noise with 4 =2,0 = 10

models, Gaussian noise is the most common in medical images, resulting from the
central limit theorem, which states that the sum of many random variables generates
a signal with a Gaussian PDF. This was implemented using ITK Gaussian generator
filter in our experiments. Poisson noise is common in CT images, which are gener-
ated by accumulating photons over a detector. We modified the non-uniform random
variable code in [31]’s library to generate Poisson noise, using chop down sample
methods. Finally, many estimation experiments [29}32}|33/|34]] in MRI demonstrate
that the data in a magnitude image is Rician distributed, because computation of a
magnitude image is a non-linear operation. We used the method described in [29] to
generate Rician noise, by integrating the magnitudes of two Gaussian noise PDFs
with the same deviation (see pages 138-139 in [35])).

We generated synthetic data volumes in a manner similar to [[15]], with background
intensity set to 100 and the object intensity ranging from 150 to 200, satisfying a
parabolic profile. Fig.[Bldisplays three noisy images and their associated distribution.
The three types of noise were used in our experiments to corrupt the volume data, so
as to measure their impact on the centerline algorithms; in particular, our goal was
to understand their accuracy, robustness and stability under these conditions.

3.3 Experiments: Accuracy Analysis

We have used a synthetically generated volume of a curved, sinusoidally shaped
cylinder (100 x 100 x 102 voxels, Fig. [7), as well as a radiologist supervised
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segmented head MRT dataset (256 x 320 x 128 voxels, Fig.[8) to evaluate the ac-
curacy of our probabilistic centerline extraction method, and compare it with the
traditional distance transform method. We added the three types of noise to both
datasets, with o = 20 and 40 for the sinusoidal cylinder dataset, and ¢ = 10 and 20
for the head MRT data. As described in [13]], ¢ = 40 and above represents a worst
case scenario, even for medical images. We computed the gradient magnitude field
(using itk::GradientMagnitudeRecursiveGaussianImageFilter) with o = 10 for the
cylinder dataset and ¢ = 0.5 for MRT dataset.

Three accuracy measures similar to [13]], were computed from the extracted cen-
terline, as follows:

o Average Error: This represents the mean distance between corresponding
points between the ideal centerline and extracted centerline. Results can be
ambiguous, depending on how the corresponding points are computed; in our
implementation, we pick the larger of the two distances computed, starting
from each of the two centerlines.

o Maximum Error: This represents the maximum distance between two corre-
sponding points.

o Percent Points Within 1 Voxel: This represents the percentage of voxels on
the extracted centerline that are within 1 voxel of their closest ideal centerline
point.

For the cylinder dataset, we know the exact location of the centerline, which en-
ables us to measure the accuracy of our algorithm under various conditions. Fig. [7]
illustrates the results on this dataset with added Gaussian noise (top row), Poisson
noise (middle row) and Rician noise (bottom row), with noise deviation, o = 40 for
all images. For the Rician noise, the mean, y = 2. The left column of images are
generated using our probabilistic distance transform method, while the images in
the right column are generated using the traditional distance transform method. The
ideal centerline (in red) is overlaid with extracted centerline (in yellow). Significant
errors can be noticed in the images in the right column, especially for Gaussian
and Rician corrupted data. For spatial perspective, we also output the isosurface

Fig. 6 Centerline of a straight cylinder. (a, b, ¢) Traditional distance field method with noise,
o = 0,10,20, (d) probabilistic distance field method with noise, ¢ = 20




Accurate and Robust Centerline Extraction 151

Fig. 7 Results: Synthetic Dataset Centerline Extraction Under Gaussian (top row), Poisson
(middle row) and Rician Noise (bottom row). Noise level, o = 40. Ideal centerline(in red)
overlaid on top of extracted centerline(in yellow). Left column: Using our probabilistic dis-
tance transform method, Right column: Using traditional distance transform method.
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Table 1 Accuracy of Sinusoidal Cylinder. Comparison of the probabilistic distance transform
method vs. traditional distance transform method at two noise levels, o = 20, 40.

Error Measures: Prob. Dist. Transf./Trad. Dist. Transf
Noise c=20 o =40

Type Average|Maximum|% Pts within||Average|Maximum|%Pts within
1 voxel 1 voxel
Gaussian| 0.8/2.0 | 2.2/5.4 | 98.0/48.7 || 1.3/5.7| 3.0/11.2 | 73.5/9.1
Poisson | 0.5/0.7 | 2.23/3.0 | 97.1/95.1 |[0.5/0.7 | 2.2/4.1 | 98.1/91.5
Rician | 0.5/0.7 | 2.2/3.0 | 97.1/95.2 | 0.8/1.7 | 2.0/4.2 | 95.1/53.2

(via the Marching Cubes algorithm([36]) of the object at a threshold of 150 (where
the boundary begins). At the higher noise levels, the isosurface adds more and more
geometry, making it difficult to perceive the centerline. Hence we have made the
isosurface almost fully transparent.

Table [[ shows three accuracy measures for the cylinder dataset with o = 20,40.
We can see that the average error using our method is between 0.5-0.8 voxels, in
comparison to 0.7-2.0 voxels using the traditional distance transform method. This
demonstrates that our probabilistic approach is more noise tolerant than traditional
distance transform methods.

We next compare our method with the traditional distance transform method on
the segmented MRT head dataset. In order to accurately estimate the results, a part
of the relatively thick trunk was chosen as the experimental volume. We first use the
traditional distance transform to extract the centerline from the segmented medical
data by specifying start and end points. This result is considered as the ideal cen-
terline in our experiments (our implementation closely follows [2]], which is based
on locating centerline voxels with the largest distance from the boundary). Then we
tested our algorithm on noisy MRT data, with ¢ = 20. The volume was first roughly
segmented using thresholding. Both methods were then used on this dataset with the
same start and end points(as used to compute the ideal centerline).

Fig. [8§] displays the results; the ideal centerline (in red) is overlaid with the ex-
tracted centerline (in yellow). The the three rows of images correspond to datsets
with added Gaussian, Poisson and Rician noise, respectively. The left column of
images illustrates results using the traditional distance transform, while the right
column shows results using the probabilistic distance transform method. Notice the
regions marked A and B in the figures; due to segmentation errors, the traditional
method does not recognize the horizontal bend of the blood vessel and builds the
centerline as if there are two separate vessels. Our probabilistic method computes
the correct centerline, primarily due to the gradient tracking procedure, that handles
very small vessel structures(the region around points A and B were at most 3 voxels
wide) in a more robust fashion.

TableRldisplays the computed accuracy measures the for MRT head dataset, with
the three different noise types at o = 20. Average errors of our method are between
0.5-0.7 voxels, vs. 2-3 voxels using the traditional distance form method. Maximum
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Fig. 8 Comparison between traditional distance transform vs. probabilistic distance trans-
form approach on segmented head MRT data, with added Gaussian (top row), Poisson (mid-
dle row) and Rician (bottom row) noise. Ideal centerline (in red) is overlaid on the extracted
centerline (in yellow). Images in the left column are generated using traditional distance trans-
form method, while images in the right column are using the probabilistic distance transform
method.
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Table 2 Centerline accuracy of head MRT data at noise level 20.

Measures
Noise Trad. Dist. Transform/Prob. Dist. Transform
Type |Average Error|Maximum Error|% Points Within 1 Voxel
Gaussian 3.0/0.7 5.2/1.6 75.6/97.4
Poisson 2.0/0.5 4.8/1.6 85.7/98.9
Rician 2.2/0.5 4.8/1.7 81.4/99.2

errors are also much smaller, 1.6-1.7 vs. 4.8-5.2 voxels, and over 95-99% of voxels
are within 1 voxel, vs. 75-85% for the traditional method.

3.4 Experiments: Medical Data

Additionally, we have tested our algorithm with two medical volume datasets avail-
able from the archive at University of Tuebingen[24], and four colon datasets avail-
able from the National Library of Medicine, [37]. We describe our experiments with
these datasets next, in the presence of Gaussian, Poisson and Rician noise.

Fig.[Oldisplays the results of the aneurysm dataset with no added noise (top left),
Gaussian (top right), Poisson(lower left) and Rician noise (lower right), at a noise
level, 0 = 50. Centerlines were extracted on all vessels connected to the main trunk.
As this vascular tree has also a significant number of disconnected structures as well
as many extremely small vessels, it is a particular challenging dataset. Here we show
the isosurface of the vessels (for spatial perspective) from the clean (no noise) data,
as otherwise the centerline is barely visible. Since it’s very hard to judge the results
from thin branches, we focus on the resulting centerlines of the trunk. At high noise
levels, there are a few spurious branches using our method.

Fig.[10Ishows the results of a second head MRT data with Gaussian, Poisson and
Rician noise at ¢ = 20. The isosurface is extracted from segmented data. The MRT
data set has considerably weaker boundaries. As the vessels are just a few voxels
wide, for noise levels of o = 40 (not shown) and above, the centerline starts to ex-
hibit errors. This can also happen when small blood vessels are extremely close to
each other, as encountered by Frangi [[14]. Thus, we also qualitatively verify the
centeredness of our algorithm using 2D texture mapped planes (not shown), corre-
sponding to axial, sagittal and coronal orientations.

Finally, we have tested our method on four colon datasets, part of the large
archive at the National Library of Medicine[37]. Fig. [l illustrates centerlines ex-
tracted from three of these datasets. In Fig. we illustrate the effects of adding
noise to one of these datasets. The upper left image illustrates the dataset with
no added noise, and the remaining three images with Gaussian(upper right), Pois-
son(lower left) and Rician (lower right) noise added, at a noise level of o = 20.
In these images, the centerline of the noisy dataset (in yellow) is overlaid on the
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Fig. 9 Aneurysm Dataset with no added noise (top left), Gaussian (top right), Poisson (lower
left) and Rician noise (lower right ), o = 50.

centerline of the clean dataset (in red). Mid sections of the section show very lit-
tle error. The centerlines deviate at the beginning and the ending regions of the
colon; this is due to the differing start and end points used in the respective datasets.
Table 3] shows errors measured on one of the colon datasets when noise is added to
the datasets; errors are calculated with respect to the centerline extracted from the
clean dataset. Average errors range from 0.3 to 2.3 voxels, while the maximum er-
ror ranges from 2.2-4.3 voxels. As can be expected, errors increase with increasing
noise levels.

Table M illustrates the running times for the six medical dataset examples with
Gaussian noise. Probability function construction times range from 1-7 minutes in
the Dell Dimension 4550 desktop (Pentium 4 2.66GHz, 1G RAM). Similar to the
synthetic datasets, running times can be further improved by more properly handling
volume boundary effects.
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Fig. 10 Aneurysm Dataset. ¢ = 20.(Upper Left:) No added noise, (Upper Right:) With
Gaussian Noise, o0 = 20, (Lower Left:) With Poisson Noise, o = 20, (Lower Right:) With
Rician Noise, o = 20.

Fig. 11 Centerline Extraction from 3 Colon Datasets.
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Fig. 12 Results:Analysis of Colon Dataset with Added Noise, o = 20. Upper Left: Center-
line of colon dataset with no added noise, Upper Right: With Gaussian noise, Lower left With
Poisson noise, Lower right: With Rician noise. Centerlines of noisy data (in yellow) overlaid
on centerline of clean dataset(in red).

Table 3 Error Measures of Colon Dataset with added noise.

Noise Level Error Measures (in voxels)
Average|Maximum|% points within 1 voxel

c=10[ 0.3 2.2 95.5
Gaussian|joc =20 0.6 2.7 92.1
c =40 1.7 4.2 77.8

c=10| 1.0 4.2 84.6

Poisson ||[c =20| 0.4 2.6 914
c =40 0.7 3.6 89.4

c=10| 04 2.5 92.0

Rician o =20 0.8 2.9 86.1
c=40[ 23 4.3 68.2
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Table 4 Running Times(secs): Medical Datasets

Resolution Running Times (seconds)
Dataset (voxels) Prob. Model Constr./Centerline Extr.
c=0 c=20 c=25
Aneurysm|256 x 256 x 256| 114.1/8.0 |114.3/8.1| 114.3/8.1
MRT 256 x 320 x 128| 70.8/4.5 |74.1/13.9| 74.1/13.9
Colonl 409 x 409 x 220|424.7/40.9
Colon2  |385 x 385 x 231|397.8/56.3
Colon3 409 x 409 x 212|412.7/60.6
Colond 409 x 409 x 219|417.9/28.2

Table 5 Stability of Extracted Centerline: Error Measurements as Segmentation Threshold
is Varied from 60 to 90. Noise level o = 0.5.

Error Dataset

Measures |[No Noise|Gaussian|Poisson|Rician
Average 0.4 0.4 0.4 0.3
Maximum| 2.1 1.9 2.1 1.5

3.5 Stability of Centerline

It is important to understand the stability of the centerline is with respect to initial-
ization and segmentation parameters. In our algorithm, the initial parameters include
the threshold used to generate the rough segmentation, noise deviation and for Ri-
cian noise, the mean of the distribution. This experiment was performed on the head
MRT dataset.

Table [ illustrates error measures related to varying the initial segmentation
threshold from 60 to 90 in steps of 10 units of the scalar field value. We then com-
puted the distance between these centerlines (one pair at a time), which in turn was
done by computing the closest distance between corresponding voxels. The results
were averaged to determine the average error. The maximum of these distances was
reported as the maximum error. Average error ranged from 0.3-0.4 voxels and the
maximum error from 1.5-2.1 voxels.

4 Discussion

The primary goal of this work was to extract centerlines of tubular structures in
a robust and accurate fashion, without assumptions of knowledge of exact bound-
aries. Complex datasets such as those used in this work and archived at are
considerably challenging to traditional distance field algorithms, which assume a
binary (usually thresholded) dataset and hence zero distance values on the boundary.
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Fig. 13 Effect of Change in Scale. The region marked by the yellow rectangle has two blood
vessels very close to each other. Left: Using gaussian smoothing with ¢ = 1.0 results in
neighboring voxels from the two vessels, and the centerline is henceforth joined, Right: o =
0.5, produces the correct result.

Using a probabilistic model to estimate the boundary encodes its uncertainty, and
thus leads to a centerline algorithm that is less sensitive to errors and artifacts that
distort the boundary. Moreover, this approach permits us to work directly with the
grayscale images and their properties; here we use the gradient field to determine the
boundary location by posing this as a search for a local maximum. Existing distance
field based methods assume the boundary is easily available, but this implies (at
least for medical images) an accurate segmentation, a significant task in of itself.
Our approach has a weaker assumption, i.e., the anatomical structures of interest
can be roughly separated from the rest of the volume. This is comparable to methods
such as [18]).

We further explore the robustness of our method by explicitly adding noise that
is common in medical images: Gaussian, Poisson and Rician, and demonstrate both
qualitatively and quantitatively the strength of this approach over existing distance
field based approaches. Here again, exploiting image characteristics produces better
results. Traditional distance field based approaches will need to have a robust seg-
mentation method to deal with the image noise, prior to extracting the centerline.
This will significantly add to the computation. Otherwise, they tend to produce poor
results, as illustrated in our experiments using thresholding to segment the structures
in the noisy images.

Approaches that use ridges using eigen value analysis do produce ex-
cellent results, but there are two issues, (1) significantly increased computation to
determine Hessian and eigen values, and (2) for datasets such as a colon there are
generally significant numbers of interior voxels with little or no gradient (large ho-
mogeneous regions).

Our approach is efficient, as it requires only the gradient field to be computed for
estimating the boundary. Often this has to be computed anyhow, since visualization
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algorithms require them to compute surface normals. The most expensive part of
our method is the distance field computation, but here again, efficient algorithms
exist[38].

Finally, some aspects of the centerline extraction algorithm are incomplete, for
instance, incorporation of variable scale to adapt to significant changes in object ge-
ometry, or, in dealing with extremely small tubular structures. An example is shown
in Fig.[[3] In the leftimage, the MRT dataset was filtered by a gaussian with o = 1.0.
This effectively joins the two parallel blood vessels in the region shown (marked by
the yellow rectangle). In the right image, we have reduced the scale to o = 0.5 to
obtain the correct centerline. In this particular example, the region of interest was
adaptively smoothed with the smaller gaussian kernel to illustrate the right result.
We are currently looking into ways of efficiently detecting such regions as part of
our algorithm, so as to use the appropriate scale based on local image characteristics.

5 Conclusions

We have presented a robust and accurate centerline extraction algorithm that can
work directly with gray scale images and a rough segmentation of the structures
of interest. The goal of this work was toward analyzing large medical structures.
We have presented a probabilistic model to estimate the boundary using an integra-
tion of the gradient field. The computed voxel probabilities were then used to build
a modified distance field, which is then used to extract the centerline of the object.
Experiments on both synthetic and clinical datasets illustrate the strength of the pro-
posed method. We have tested our approach for accuracy on both synthetic volume
models and segmented medical datasets. Additional experiments were performed on
six publicly available medical datasets. Noise tolerance of the method was demon-
strated by adding significant amounts of Gaussian, Poisson and Rician noise to the
volume data. Stability of the centerline was evaluated with respect to changes in
input segmentation parameters. All of our experiments illustrate the strength of
this method, in comparison to existing distance field based approaches to centerline
extraction.
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