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Abstract

Mammography is currently regarded as the most effective and widely used method for early detection of breast cancer, but recently

its sensitivity in certain high risk cases has been less than desired. The use of Dynamic Contrast Enhanced Magnetic Resonance Imaging

(DCE-MRI) has gained considerable attention in the past 10 years, especially for high risk cases, for smaller multi-focal lesions, or very

sparsely distributed lesions. In this work, we present an interactive visualization system to identify, process, visualize and quantify lesions

from DCE-MRI volumes. Our approach has the following key features: (1) we determine a confidence measure for each voxel, representing

the probability that the voxel is part of the tumor, using a rough goodness-of-fit for the shape of the intensity-time curves, (2) our system takes

advantage of low-cost, readily available 3D texture mapping hardware to produce both 2D and 3D visualizations of the segmented MRI

volume in near real-time, enabling improved spatial perception of the tumor location, shape, size, distribution, and other characteristics

useful in staging and treatment courses, and (3) our system permits interactive manipulation of the signal–time curves, adapts to different

tumor types and morphology, thus making it a powerful tool for radiologists/physicians to rapidly assess probable malignant volumes. We

illustrate the application of our system with four case studies: invasive ductal cancer, benign fibroadenoma, ductal carcinoma in situ and

lobular carcinoma.
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1. Introduction

X-ray mammography remains the most widely used

radiological means to early detection of breast cancer. In

conjunction with ultrasound, physical exam and needle

biopsy, termed triple assessment, it is the current gold

standard in clinical practice. On the other hand, its lower

sensitivity to certain high risk cases has not been

satisfactory [1,2]. Additionally, in cases of dense breast

parenchyma or breast implants, X-ray mammography may

be inconclusive or equivocal.
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Magnetic resonance imaging (MRI) is a powerful

imaging technique that has the ability to produce cross-

sectional images of high spatial resolution at any orien-

tation. It has the capacity to manipulate the contrast between

different soft tissues. MRI can distinguish between soft

tissues, based on magnetic-proton lattice interaction. These

features have helped promote its wide clinical use,

especially in producing accurate images of the central

nervous system.

The use of MRI in breast imaging, termed MR

mammography has gained considerable attention in recent

years, especially for high risk cases [3]. Human breast tissue

presents a challenge, however, as it is heterogeneous in the

variability of tissues to be distinguished. Thus, the use of

contrast agents, such as gadolinium-diethylenetriaminepen-

taacetic acid (Gd-DTPA), can increase the sensitivity of

MRI. Dynamic contrast enhanced (DCE) MRI has been

shown to help detect certain kinds of cancer cells in many
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Fig. 1. Time–signal intensity curve types (reproduced from [4]).
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organs of the body such as the brain and lung. Two

important factors have been suggested in enhancing tumor

regions, (1) the effect of angiogenesis activity, resulting in

increased vascularity (vessel density), and thus, increased

contrast agent intake, and (2) increased vessel permeability,

leading to increased leakage of contrast agent at the tumor

site. Dynamic imaging of the breast (or a selected region of

interest) makes it possible to functionally analyze the

contrast intake and washout, using signal–time curves [4].

These factors can assist in improving the sensitivity and

specificity of the lesions.

While direct visual examination of dynamic MR images

continues to be the primary means to evaluate breast lesions,

this is a laborious task; with increasing spatial and temporal

resolution in the acquired MR volumes, manual processing

and interpretation of dynamic MR volumes can quickly

become infeasible. Additionally, there is considerable inter-

observer and intra-observer variation in interpreting the

enhancement of tumor regions [5]. Finally, variations in

MRI techniques used at different sites, lack of consensus in

architectural and kinetic features of tumors, differing

morphologic and curve interpretation criteria have all

motivated the development of breast imaging reporting

and data system (BI-RADS) atlas [6], which provides a

common language to report and compare breast tumor

studies.

In this paper, our focus is on providing interactive

visualization tools that provide physicians and radiologists

the means to evaluate DCE-MRI volumes. We describe a

new visualization and analysis system to process, detect and

evaluate breast tumor lesions from DCE-MRI volumes.

Using signal–time curve data at each voxel, we compute a

confidence measure, representing the probability that it is, or

is not malignant. The resulting confidence volume, in

conjunction with the control volume (MRI volume without

the contrast) is used to build a 3D texture. Using commodity

graphics cards with 3D texture mapping hardware (for

example, NVIDIA GE Force FX or ATI Radeon 9700), we

use texture mapped volume rendering techniques to view

and interact with the MR volume in near real-time. By

suitably adjusting the transfer function, we can create semi-

transparent renderings that display the lesions (single or

multi-focal) distributed within the MR volume. Interactive

viewing (rotation, panning and zooming) allows users to

obtain a 3D perspective of the lesions, in terms of their

location, shape, size, orientation and distribution. Inter-

active manipulation and adjustment of the signal–time

curves provides a powerful means to dealing with differing

tumor characteristics. All of these features significantly

reduce the efforts of radiologists in locating malignancies,

and aid in standardizing curve characteristics from patient to

patient.

We demonstrate our system on four breast tumor cases;

invasive ductal cancer, benign fibroadenoma, ductal carci-

noma in situ (DCIS) and lobular carcinoma.
2. Background

2.1. DCE-MRI

Advances in breast MR imaging are being driven by

rapid changes in dedicated breast coils, protocol changes in

MRI pulse sequences, and the use of contrast agents to

enhance the appearance of lesions. Contrast agents, such as

gadolinium-DTPA helps change (relaxation times) the

magnetic state of hydrogen atoms in water molecules.

This in turn results in marked enhancement in certain

aspects of blood vessels. It is well understood that in the

vicinity of a tumor, there is a higher probability of an

increased supporting vasculature (due to its metabolic

demand for oxygen) [7,8] of varying perfusion and levels

of oxygenation, and a large blood volume. In T1-weighted

images, these regions appear bright due to the increased

intake of the contrast agent, while in gradient-echo T2-

weighted images, the same regions appear darkened,

indicating tissue perfusion.

In order to monitor intensity value of the contrast agent

uptake (washin) and subsequent decrease in intensity

(washout), the region of interest is imaged repeatedly,

resulting in a signal–time function for each voxel within the

entire tissue volume; an example is shown in Fig. 1. We

suspect that analysis and interpretation of these signal–time

curves will give us useful information on both the location

and type of lesion, as described below. There is considerable

variability world-wide by various researchers in the volume

acquisition rate and the delay between acquisitions, with

trade-offs between spatial and temporal resolution. The

speed of acquisition depends on the size of the volume that

is imaged, the strength of the magnetic field, the nature and

number of channels of the dedicated coil, its type of phased

array, and speed of its transceiver and transmitter.

2.2. Interpreting DCE-MRI images

In interpreting the signal–time curves resulting from

DCE-MRI volumes, a three category classification is

currently in use [4], as shown in Fig. 1. Curves are classified
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as type I: steady enhancement (straight or curved), type II:

plateau of signal intensity, and type III: washout of signal

intensity. Types Ia and Ib have been suggested to be

indicative of benign lesion, type II suggests possible

malignancy, and type III strongly suggests malignancy.

Kuhl et al. [4] found a strong correlation between benign

and malignant lesions based on the shape of the signal–time

intensity curve shape. Of the 266 cases studied, sensitivity

of 91% and specificity of 83% was achieved, and an overall

diagnostic accuracy of 86%.

This classification scheme, while providing a very

valuable insight to identify and segment suspicious

volumes, is subject to large physiologic variation. We

suggest signal-intensity curve analysis provides a prelimi-

nary means to locate suspicious volumes within the breast,

which can then be examined more carefully using additional

metrics, such as location, shape and other morphological

features.

A number of quantitative and estimation techniques have

been proposed by researchers to interpret the signal–time

curves, such as using the time delay between vessel and

lesion enhancement [9], or using the percent enhancement

beyond a certain time threshold. A second class of

techniques focused on estimating the gadolinium concen-

tration as a function of time, so as to extract pharmaco-

kinetic parameters [10,11]. These kinetic curves may further

be fit to empirical functions and parameters estimated for

lesion classification, yielding a higher specificity. One

disadvantage of these techniques is the high temporal

resolution that is needed for maintaining accuracy, which in

turn limits the size of the region being imaged. Overall

accuracies of these techniques have considerable variance in

terms of lesion sensitivity and specificity, and thus have not

gained wide acceptance to date.

When there are multiple cancerous volumes, analyzing

signal–time curves becomes tedious and error-prone, and

requires examining individual voxels in image slices,

depending on the tools available at a site. Even more

complex, a single breast may contain more than one type of

malignancy, adding complex variability to this inspection

process. In our system, we have enabled interactive

specification and modification of signal–time intensity

curves followed by recalculation and display of cancerous

sub-volumes over the entire breast volume. We suggest that

near real-time volume visualization techniques for rapid

analysis and quantification of breast lesions will increase

radiologist hit rate and reduce error rates.

2.3. Texture mapped volume rendering

We use volume visualization techniques [12] to view and

interact with the acquired DCE-MRI volumes. There are

two broad approaches to rendering volumetric data, surface

based techniques and direct volume rendering techniques.

In surface based methods, the volume is transformed into

surface primitives and then rendered as polygonal geometry.
A very popular method to generate surface primitives from

volumetric data is Marching Cubes [13], where a specified

contour surface (surfaces of a constant surface value) is

algorithmically approximated and meshed into a set of

triangular facets, and rendered using standard graphics

engines. Direct volume rendering (DVR) techniques assume

the volume is semi-transparent (each volume element has a

specified opacity) and project the volume on to an image, by

sampling the volume either front-to-back, as in the case ray-

casting techniques [14], or back-to-front, as in compositing

[15,16]; other DVR techniques include splatting [17], shear-

warp factorization [18] and 3D texture mapping [19,20].

The biggest disadvantage of DVR techniques has been

their computational expense, as they cannot take advantage

of polygon rendering hardware. However, current graphics

engines, such as Nvidia GEForce FX or the ATI Radeon,

support real-time 3D texture mapping, which can be used to

interactively view and manipulate the volume data. More-

over, by making the hardware more programmable at the

geometry processing (vertex shaders [21]) and rasterization

(fragment processing) stages [22], and the recent develop-

ment of high level languages such as CG [23], texture

mapped volume rendering has become an important means

to render and manipulate volumetric data.

3D texture mapped volume rendering technique [19,20]

consists of loading the 3D texture, which is the volume data.

This is followed by generation of proxy geometry, typically

a set of view-aligned polygonal slices, with the polygon

vertices determining the texture coordinates. Volume

rendering is accomplished by blending these slices in

order [15,24]. This is efficiently performed in hardware,

requiring resampling the volume data, as well as blending

the slices in back-to-front or front-to-back order.

In our system, we use 3D texture mapped volume

rendering to view DCE-MRI volumes, for two reasons, (1)

3D texture mapping hardware is readily available on low

end computing platforms, and (2) texture mapped volume

rendering permits real-time rendering and interactive

manipulation of large volumes.
3. Methods

3.1. Data representation

A dataset consists of a 4D array of intensity values,

interpreted as a sequence of volumes across time, or a single

volume with multiple intensity components. For each voxel,

a signal intensity-time curve can be plotted. This curve is

used to determine the voxel’s probability of being classified

as malignant.

3.2. Volume visualization interface

The breast tumor visualization and analysis system we

describe here was driven by the following considerations:
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†
 An intuitive interface that allows easy access to

information that is clinically useful for diagnosis and

evaluation.
†
 A highly interactive interface that permits data explora-

tion, allowing physicians/radiologists to influence the

manner of data displayed, permitting optimal use of their

cumulative expertise in evaluating breast tumor cases.
†

Fig. 2. Confidence measure computation.
Use of both 2D and 3D visualizations that is tightly

coupled, permitting optimal understanding of tumor

shape, size, location and morphology.

Fig. 3 shows a snapshot of the application interface. It

consists of four major components, (1) 2D slice views, (2)

3D volume view, (3) signal–time intensity curve manipu-

lation and confidence computation, and (4) tumor quanti-

fication. The curve manipulation interface is shown in the

right panel of Fig. 3, and will be described later.

Three axis-aligned 2D views show orthogonal slices of

the volume, corresponding to the axial, sagittal and coronal

views. These axis-aligned slices are themselves extracted

from the 3D texture volume. The 2D views can be

interactively translated or scaled to focus on a particular

region of the volume. Picking on any of the 2D views

automatically updates the cross-hairs on the remaining 2D

views, as well as the 3D view, so that the user maintains

spatial context across all the views.

A single 3D perspective view shows a semi-transparent

view of the entire volume, rendered using 3D texture

mapping. The 3D view can be interactively translated or

zoomed in/out. The 2D and 3D views are linked during

interactive operations, so that the cursor position identifies

the location in 3D space and simultaneously shows that

same location in each of the three, 2D views. The user may

select a single location within the 3D volume, represented

by the three intersecting axes, or click to update the cross-

hairs into any of the 2D slice views. Moving the cross-hairs

in the 2D views updates the referenced location in the 3D

volume view. However, direct picking in the 3D view is

performed by locating the first probable cancerous location

(high confidence region) along the picking ray, formed by

the screen location and the viewing direction. 3D picking

provides a convenient means to locate and select suspicious

cancerous regions in the 3D view for closer examination, or

to perform quantification. These regions are immediately

updated in the three 2D views.

The 3D volume visualization in combination with real-

time interaction provides spatial context to examining

suspicious tumor lesions (their location, shape, size, etc.),

while the 2D views permit more precise examination and a

differing perspective within each slice. Linking the 2D and

3D views provides the ‘bridge’ to switch rapidly between

the two views, allowing the user to localize and select a

particular sub-volume. Hardware accelerated texture

mapped volume rendering facilitates real-time viewing

(panning, zooming and rotation) and interaction. In a typical

scenario, a user would pick a suspicious lesion in the 3D
view, which is immediately brought into the three 2D views

(corresponding to the picked 3D point) for a closer

examination. The real-time navigation capabilities of the

volume view enables easy examination of 3D lesion shape,

orientation and other morphological features. At the same

time, the traditional means of examining consecutive axial,

sagittal, and coronal slices (we use sliders) is retained. In

these views, intensity values are mapped to shades of gray

and cancerous regions are mapped to shades of red. In the

3D view, higher intensities and higher confidence values

produce higher opacity (alpha) values.
3.3. Confidence measure computation

Our system computes a confidence measure for each

voxel, representing the probability that it is part of a

malignant lesion, thus requiring further analysis. Making

this measure a continuous range avoids binary classification

decisions which can result in aliasing errors, and helps

quantify tumors more accurately. It also permits users to

make multiple measurements for tumor volume by setting

the confidence level (see Section 5).

To compute the confidence measure for a particular

voxel, we can interactively specify a signal–time curve

that roughly reflects the shape corresponding to the

probable cancerous lesions in the dataset. Alternately, a

user may pick a few voxels central to the lesion, and

examine their signal–time curves. These can be selected

and used to generate a mean curve shape. Each point on

this mean curve (the small shaded squares in Fig. 2) is

associated with an adjustable value range (min/max). All

signal–time curves that fall within these ranges are

assigned the maximum confidence value of 1.0 (the area

between the dotted curves in Fig. 2). In addition two

threshold curves are also specified; signal–time curves

outside of the threshold curves are assigned a confidence

value of 0.0. As shown in Fig. 2, the solid curve is the

mean curve, while the dashed curves represent threshold

curves. Voxels whose signal–time curves fall between
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the threshold curves and the dotted curves are assigned a

confidence value between 0.0 and 1.0. We approximate

this computation by evaluating the vertical distance of

each sample point (transparent cube in Fig. 2) on the

dashed curve to the closer dotted curve (we use five time

steps in our experiments), and computing a value between

0.0 and 1.0, using linear interpolation. The product of

these sample point ‘confidence’ values becomes the final

confidence measure of the voxel.

3.4. Tumor quantification

The confidence volume described in Section 3.3 can be

used to analyze and compute the volume of tumor lesions.

This process begins by first selecting the lesion of interest,

using 3D picking. Then a confidence threshold is specified;

voxels with confidence values below this threshold are not

considered to be part of the lesion. A connected component

labeling algorithm is used to identify the voxels above the

selected threshold. The lesion volume is then calculated by

summing the volumes of the individual voxels, weighted by

their associated confidence measure. Thus, holes or gaps

within the lesion are not counted, and the weighted sum

gives a more accurate volume measure, as the weight

represents a probability.

Multiple lesions can be successively quantified; alter-

nately our system permits the entire volume to be examined

with connected component labeling, beginning from seed

voxels having a confidence measure above a threshold (for

instance, 0.9). These are stored in a list for later review.
1 Full resolution color images corresponding to these cases shown in Figs.

3–6 can be found at http://www.cs.uncc.edu/~krs/research.html.
4. Implementation

We have implemented our visualization system in CCC
on PCs running Windows or Linux, and are equipped with

an Nvidia GE Force FX5800 graphics card. Our graphical

interface is built using the FLTK toolkit [25].

4.1. Rendering

Given a camera position and orientation, view-aligned

slices are generated by intersecting a unit cube with a series

of planes orthogonal to the view direction. As described

earlier, the volume texture is mapped onto each of these

slices, followed by blending these slices in front-to-back

order. The three axis-aligned views are also extracted from

the 3D texture, using texture lookups corresponding to each

slice.

4.2. 3D texture/transfer function design

3D textures with RGBA (red, green, blue, alpha)

components are generated by centering the MRI volume

data within a 3D array. The red and green components of the

texture are used to store intensity values (red representing
the MSB and green for the LSB). The blue component stores

confidence values and the alpha value is currently unused.

The user may specify which volume within the dataset

provides intensity values. Before rendering, the entire texture

is loaded into video memory.

Transfer functions provide the mapping from volume

density values to color (RGB) and opacity (alpha), prior to

slice compositing. Transfer functions can be as simple as a

linear (or multi-ramps) mapping [15], or multi-dimensional

[14,26–28]. In our current implementation, we represent

transfer functions as Cg fragment shader programs [23],

consisting of the following steps:
†
 A lookup is performed on the 3D texture using the

interpolated 3D texture coordinate.
†
 The volume density is retrieved from the red and green

components, interpreted as a 2 byte value. Because of

current fragment shader limitations, values above 255 are

truncated.
†
 Window and level parameters are applied to adjust the

intensity.
†
 A pixel opacity value is computed using the blue

component (from the computed confidence measure, as

described earlier) and opacity parameter that represents

the overall slice opacity.
†
 The output color is computed as (intensityCconfidence)

factor. Blue and green values are computed as (intens-

ityKconfidence) factor. This produces a bright red color

in areas of high confidence and shades of gray in areas of

low confidence.
†
 The output alpha value is set to the weighted sum of

intensity and the confidence factor, multiplied by the

opacity parameter. Different weights may be used for

different transparency effects.
5. Experimental results

The interactive visualization system was tested on four

DCE-MRI volumes, corresponding to invasive ductal

cancer, benign fibroadenoma, DCIS and lobular carcinoma1.

Table 1 describes the breast MRI protocols used. All of the

data were acquired as part of an overall MR mammogram

for women of high risk for breast cancer. These included

women who had a history of breast cancer, familial breast

cancer, carried the BRCA1 or BRCA2 gene, or were

mammographically occult and ultrasonographically anom-

alous. In no case was there radiographic or ultrasonic data

confirming suspicion of a lesion, with architectural distor-

tion or conspicuous densities.

http://www.cs.uncc.edu/~krs/research.html


Table 1

Breast MRI protocol

Series Landmark Image

mode

Plane Pulse

sequence

VBW

3PL Loc Xyphoid 2D 3-Plane Localizer Yes

Sag FSE T2 Sternal 3D Sagittal FSE-XL Yes

T1 Special Sternal 3D Sagittal SPGR Yes

3D Gado. Sternal 3D Sagittal SPGR Yes
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5.1. Case 1: Invasive Ductal Cancer

Case 1 (Fig. 3) shows a 39-year-old Caucasian female

left breast, revealing two invasive ductal cancer regions.

This was confirmed by fine needle aspiration biopsy.

Radiology assessment. Just lateral to the left nipple in the

subareolar region is a heterogeneous nodular enhancing

focus with irregular and nodular borders. The largest focal

mass is on the order of 13–14 mm. Posterior and inferior to

this are two adjacent nodules on the order of 5 mm each.

These have enhancement profiles, increasing concern for

multi-focal carcinoma in the left breast. There are other

abnormal enhancing foci within the left breast, raising

concern for distance disease. One is adjacent to the chest

wall just lateral to the left nipple. This is deep within the

parenchyma and is on the order of 3!5 mm. Another focus

just inferior to the subareolar margin is on the order of

2–3 mm in size. There are three other tiny foci of

enhancement superior to the largest tumor focus in the

mid breast. These are present throughout and approximately

2 cm superior. These three tiny areas more superiorly are
Fig. 3. Invasive du
indeterminate. Normal sized lymph nodes are present in the

left axilla, although not well seen on this exam. This exam is

suspicious for multi-focal, multi-quadrant disease.

Highly probable malignant appearing areas, similar to

invasive lobular carcinoma characteristics.
5.2. Case 2: Normal Parenchymal Tissue

Case 2 (Fig. 4) shows a 58-year-old female with the

contralateral left breast examined following right breast

mastectomy. It is negative for cancer, and shows no false

positives for benign fibroadenoma, although benign fibroa-

denoma is present in parenchyma anterior to the recon-

structive implant.

Radiology assessment. Two circumferential small areas

of enhancement are present in the upper and upper inner

portions of the left breast with central areas of low signal

intensity on all imaging sequences and are observed. These

areas of halo-like enhancement are less than 10 mm in

diameter and would probably not be palpable. No masses

are detected. There is no evidence for spiculation or

segmental type enhancement. Benign appearing fibrogland-

ular enhancement is noted in the upper outer portion of the

breast.

One focus/false blood vessel is detected: there is a

submuscular silicon implant in place. No lymphadenopathy

is detected. No skin or chest wall abnormalities are detected.

There are two circumferential small areas of enhancement

present in the upper and upper inner portions. These are not

suspicious for malignancy.
ctal cancer.



Fig. 4. Benign fibroadenoma.
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5.3. Case 3: Ductal Carcinoma In Situ (DCIS)

Case 3 (Fig. 5) shows a 39-year-old Caucasian female

left breast with invasive ductal carcinoma with extensive

DCIS; DCIS measures at least 5.6 cm with intermediate to

high nuclear grade, solid and cribriform, with central

necrosis.

Radiology assessment. In the left lower breast, there is

a 3 cm seroma present in the prior biopsy site. Inferior to
Fig. 5. Ductal carcinoma in situ (DCIS) and
the seroma at the 6 o’clock position extending in the outer

lower portion of the left breast, 5–4 o’clock position near the

chest wall, there is an abnormal regional enhancement

present. This is highly suspicious for residual malignancy

extending over 3 cm in diameter. Diffuse non-malignant

like enhancement is present throughout the remainder of the

left breast. No definite masses are detected in the upper

breast. No lymphadenopathy is detected. No skin nipple or

chest wall involvement is detected.
two areas of invasive ductal cancer.



Fig. 6. Lobular carcinoma.
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Left invasive DCIS with multi-focal malignancy with at

least seven distinct volumes of disparate highly probable

malignant looking regions ranging from 0.02 to 6.8 cm3.

This case is highly suspicious for malignancy in the outer

lower region of the left breast.
5.4. Case 4: Lobular Carcinoma

Case 4 (Fig. 6) shows a 53-year-old Caucasian female

left breast with extensive lobular carcinoma with extension

into the ducts extending into much of the breast among

dense fibroglandular parenchymal tissue.

Radiology assessment. This case shows a clean left

breast, no cancer, except for fibrocystic disease. Numerous

small, scattered, benign cysts are interspersed among dense

fibroglandular tissue. The DCE sequence shows diffuse,

uniform enhancement of the dense fibroglandular tissue

throughout the left breast but no focal contrast aberrations

are identified and the contrast enhancement slope is

characteristically benign throughout the fibroglandular

tissue. No masses are recognized, and no architectural

distortions or alterations or other suspicious features are

observed.

Thus, in this case, the radiological assessment differed

markedly, as visual inspection of diffuse malignancy is

often easily overlooked. No architectural distortion can be

observed. We depend heavily on computation of the

confidence based on time–signal intensity curves to

indicated malignancy, rather than visual inspection. His-

tology confirmed that the patient had lobular cancer, which
was confirmed following lumpectomy and pathological

workup.
6. Conclusions

In this work, we have taken the first step in providing

interactive visualization tools for assessing breast lesions

from DCE-MRI volumes. The focus is on providing an

interactive exploratory system that eases the task of the

radiologist in understanding time-varying volume datasets.

Our system provides the capability to perform an automatic

exhaustive search of the 3D volume for suspicious tumor

lesions. At the same time, it provides the needed interactive

tools that complements the expertise of the radiologist. This

has the potential to increase the radiologist’s hit rate and

reduce errors.

Our system has the following important advantages:
†
 By allowing easy manipulation of the signal–time

curves, the radiologists can utilize their expertise in

looking for specific tumor types, for instance, using prior

knowledge of the case under consideration.
†
 The visualizations consists of both 2D. and 3D views:

3D views provide better characterization of shape and

size, while the traditional 2D views provide more

precise information about lesions in specific parts of

the volume.
†
 Linking the 2D and 3D views allows switching between

the views without losing spatial context, as well as

facilitate seamless and continuous navigation.
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†
 Our approach to using a confidence measure provides a

probability measure that is easily adjustable and also

provides an accurate means of computing tumor volumes.

We tested our system on four breast tumor cases:

invasive ductal cancer, benign fibroadenoma, DCIS and

lobular carcinoma. Our system was in agreement with the

first three cases. In the fourth case, our tool’s assessment

differed from the radiological assessment (false negative).

Histology confirmed our tool’s assessment, as well as

pathological workup after lumpectomy.

There are several aspects of the visualization system that

are ripe for improvement. The 3D views lack orientation

information, as we are simply compositing the slices in

order. We are in the process of incorporating gradient based

shading to our volume renderer [22], which will improve the

spatial perception of the tumor lesions. Secondly, we are

exploring custom transfer functions to better segment the

boundaries in the original data, for instance, using higher

order derivatives [26,28]. Such computations can be

integrated and performed efficiently on the graphics card.

Alternately, segmentation of these datasets is also being

considered, where we plan to take advantage of the 3D

techniques in the Insight Segmentation and Registration

Toolkit [29], or develop custom methods to DCE-MRI data.

Finally, seamless integration with the medical informatics

systems is also necessary, for use in a clinical environment.

Our breast tumor detection system is currently undergoing

extensive testing at the Novant Health of Charlotte for

evaluating its effectiveness. To date, we have investigated 168

‘normal’ breast cases and 188 abnormal cases, including 58

ductal invasive, 67 ductal carcinoma in situ, 39 lobular

carcinoma, 3 inflammatory carcinoma cases and 21 mixed or

anomalous cancer types. Future work will focus on using these

clinical studies to discern the varying visual and temporal

factors that will permit more robust classification to ascertain

the degrees of specificity and sensitivity for this computational

approach to detect various breast tumor lesions. Other work

will focus on clinical studies involving a larger number of

breast tumor cases that will permit more robust evaluation of

specificity and sensitivity of breast tumor lesions across a

number of attributes such as age, gender, prior treatment

history.
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