
SEPTEMBER-OCTOBER 2001 SIMULATION 103

TECHNICAL ARTICLE
SIMULATION 77:3-4,
©2001, Simulation Councils Inc.
ISSN 0037-5497/01
Printed in the United States of America

Visualization of Mobile Network Simulations

T.A. Dahlberg and K.R. Subramanian
Computer Science Department

University of North Carolina at Charlotte
9201 University City Boulevard

Charlotte, NC 28223, USA
{tdahlber, krs}@uncc.edu

The use of adaptive techniques in mobile networks
permits scalable resource allocation policies to meet
varying demand as well as Quality of Service (QoS)
performance objectives. As these algorithms operate at
multiple layers of the communications architecture,
evaluation of such techniques must take into account
a variety of scenarios, which are in turn parameterized
by a large number of variables. The need to monitor
algorithm behavior in real time results in a data
explosion. In this work, we propose new real-time
metrics to characterize and identify the critical states
of a mobile network in the wake of channel failures,
congestion, signal degradation, etc. We use these
metrics to define a survivability index, a measure of
mobile network performance in the wake of failures.
We demonstrate the effectiveness of information visu-
alization techniques in understanding the complex
spatial and temporal relationships between perfor-
mance and cost metrics that influence adaptive algo-
rithms. Our visualization system is highly scalable
and interactive, permitting multiple algorithms to be
simultaneously evaluated. We demonstrate applica-
tions to network monitoring and to the design and
evaluation of adaptive admission control algorithms.
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1. Introduction
A wireless access network is characterized by bursts
of demand from mobile users with diverse service re-
quirements, attempting to gain access to wireless
links with varying signal quality. Allocation of re-
sources to meet varying demand is constrained by the
limited frequency spectrum. Hence, current research
on mobile networks is focusing on the development of
adaptive techniques to scale resource allocation poli-
cies to meet Quality of Service (QoS) performance ob-
jectives [1, 2, 3, 4, 5, 6]. Furthermore, protocols operat-
ing at higher layers (in the communications
architecture) cannot be completely shielded from the
uncertainties of the unreliable, mobile physical envi-
ronment. Therefore, multi-layer adaptive techniques
are being pursued to coordinate the resource manage-
ment task among protocols at multiple layers within
the communications architecture [7, 8]. Finally, due to
the complexities inherent in modeling a heteroge-
neous mobile network, simulation has become a pri-
mary method for performance analysis of mobile net-
work protocols [4, 5, 8, 9, 10, 11, 12].

The basic operation of an adaptive algorithm is
twofold:  (1) to monitor the system to determine the
system state (e.g., failure, congestion, burst activity),
and (2) to invoke a particular adaptation policy that is
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best suited for that state.  In general, greater emphasis
has been placed on adaptation policies.  However net-
work monitoring for system state identification is cru-
cial for distinguishing “real problems which must be
addressed” and “burst activity that should be ig-
nored.” Current approaches to evaluating adaptive
algorithms have given insufficient attention to under-
standing the sensitivity of algorithms to make this
distinction over a wide variety of simulation sce-
narios. As will be detailed in Section 6, a considerable
number of variables and parameters influence the
adaptive resource management policies/algorithms
(e.g., offered load, threshold values). The need to si-
multaneously comprehend this large problem space
of variables both spatially and temporally for design-
ing adaptive algorithms results in a data explosion,
and we turn to modern information visualization
techniques to abstract the essence of their complex
relationships. We describe such a system and its ap-
plication to both network monitoring as well as adap-
tive admission control. Finally, our own earlier work
on survivability analysis has shown the need to con-
sider performance during the transient period imme-
diately following a failure, during the steady state
failure period, and following recovery [13]. This fur-
ther justifies the need for data visualization to be an
integral part of the analysis.

An overall goal of our work is development of
adaptive resource management policies for radio-
level survivability of cellular mobile networks. To-
wards this goal, the primary objective of this study is
to use visualization techniques to characterize system
states of mobile network simulations in terms of real-
time metrics. We introduce new real-time metrics that
have been found to be the most useful for state char-
acterization and identification. We demonstrate the
essential insight provided by the visual animations in
evaluating these metrics. We define a survivability
index (SI) for comparative survivability analysis of
resource management policies. We describe how state
characterization is used to enable these policies to
adapt to current network conditions. Our examples
include description of our adaptive admission control
algorithms and channel access algorithms. Our results
demonstrate that dynamic visualizations of system
variables and interactions among them are fundamen-
tal to leveraging the user’s intuition and domain ex-
pertise to help explore (and reduce) a large search
space of these variables.

2. Background
An ideal model of the radio-level layer of a wireless
access network is shown in Figure 1. A cell refers to a
hexagonal area surrounding a basestation tower. Each
basestation has a group of wireless channels for use in
communicating with a mobile user in its cell. A mo-
bile user receives a wireless signal from the closest
basestation. The user makes a new-connection request

to the closest basestation upon placing (or receiving) a
new call. As the user moves to a new cell, the user
must relinquish its old channel and obtain a new one
from the target basestation via a handover request.

Radio-level resource management policies include
admission control to limit the number of new calls/
connections allowed into the system, and channel ac-
cess control to schedule use of wireless channels by
ongoing calls/connections [14]. Resource manage-
ment policies are often implemented as distributed
protocols executed at each basestation to manage local
resources (channels). However, due to user mobility,
spatial relationships among neighboring cells signifi-
cantly impact protocol performance.

Survivable Resource Management refers to the degree
to which such protocols can maintain performance
standards in the wake of failure and overload condi-
tions. Due to the novelty of wireless devices, very
little work has yet been done on mobile network sur-
vivability. However, as mass use of mobile networks
increases, users will demand the same service guaran-
tees delivered by current wired networks. Compara-
tive analysis of competing survivability strategies re-
quires a definition of a Survivability Index (SI) as a
measurable metric. The review of survivability
metrics, as described in [29], reveals the need for ad-
ditional cost and performance metrics for survivabil-
ity analysis. Additional challenges are the develop-
ment of techniques to measure these metrics and the
definition of how metrics will be used to adapt net-
work policies in real time.

For instance, the simulation analysis in [8], which
studies admission control and channel access  control
for mobile networks, uses a quality metric that is a
function of 14 variables. Results are presented as 2D
graphs, each graph point representing the time-wise
(over 1 simulated hour) and system-wide (over all
cells) average of the quality metric for one value of
offered load. The spatial (between cells) and temporal
(critical times) relationships of the proposed policies/
algorithms are not considered at all. Also not consid-
ered is an understanding of how the 14 variables con-
tribute to the quality index.

In our own preliminary studies [15, 16], we experi-
mented with two Adaptive Admission Control

Figure 1. Ideal cellsite architecture
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(AAC) protocols, called AAC 1 and AAC 2.  We de-
fined the “percentage of handover requests that are
denied,” called handover blocking rate (hbr), as a per-
formance metric. 2D plots of simulation results, as
shown in Figure 2, do not clearly explain the perfor-
mance differences in the two approaches. To do this,
it was necessary to look at these metrics in real-time
for each cell of the network. As this immediately re-
sults in the generation of a large amount of data (de-
termined by the number of cells, metrics, the simula-
tion period and the sampling rate), we turned to
visualization techniques, and in particular, multi-vari-
ate visualization schemes. Multi-variate visualization
techniques are relevant in this domain, since we have
a large number of variables and the challenge is to un-
derstand their relationships and interactions spatially
and temporally.

The earliest visualization schemes for multivariate
data were projection-based, such as scatterplot matri-
ces [17], dimension stacking [18], Worlds within
Worlds [19] and HyperSlice [20]. These techniques
look at a subset of the space (usually 2 or 3 dimen-
sions) at a time, some support linking variables across
these projected views [21] and some require an order-
ing of the dimensions. The major disadvantage of pro-
jection schemes are their inability to scale with the
number of dimensions and the needed ordering of
variables in some schemes, which prevents all dimen-
sions from being treated uniformly. A second class of
techniques based on displaying multi-variate point
data through simultaneous multiple views, and
linked together by line segments connecting the
views, include the window wiring diagrams of rooms
[22] and parallel coordinates [23, 24]. Parallel coordi-
nates, in particular have received considerable atten-
tion. It maps multidimensional data into 2D plots,
treating all dimensions uniformly, by plotting n-di-
mensional points as polyline segments through the N
axes, all of which are parallel to each other. Finally,
[25] describes XmdvTool, a system that integrates
some of the most important multivariate visualization
techniques.

Fundamental to any of these techniques is brushing,
an interactive capability to look at subsets of the data.
This allows users to highlight, analyze or focus on
small or manageable portions of their data. Brushing
may be screen based, using input devices to select
data elements, or indirect (data driven), such as ma-
nipulation of multiple sliders to specify containment
criteria. A third form of brushing is structure-based
[26]; this could involve specification of level of detail,
data cluster size, etc., and is appropriate for very large
datasets. Brushing is a key capability that scales with
data size and makes drill down/roll up operations very
efficient.

3. Modeling and Simulation Framework
Our system model is illustrated in Figure 3 (details in
[14]). Rectangles represent static models that are fixed
throughout a simulation run, while ovals represent
dynamic models that define time-varying properties
of a simulation.

The geographical data set is a two-dimensional array
of grid points, as shown in Figure 4, representing the
mobile user’s physical environment (e.g., terrain
properties, transportation system, radio signal path
loss model). The data set used in this study represents
a region of North Carolina.

The cellsite architecture describes the placement of
basestation towers, basestation coverage area, and the
wireless capacity of a basestation, in the context of the
physical environment. As shown in Figure 4, our
cellsite architecture represents the use of two reuse
partitions to provide two groups of channels, with
longer and shorter coverage ranges at each
basestation. It is assumed that a user at a grid point
experiences the physical environment defined by the
geographical data set at that point and receives a us-
able wireless signal from the basestation tower in the
center of any cell that covers this grid point.

We have developed an object-oriented discrete-
event simulator in C++ to implement the system
model. During simulation, calls arrive into the system
according to a teletraffic model, and are initially located
at a grid point according to location distributions
within the geographical data set. Calls move among
grid points according to a mobility model demanding
resources (channels) from overlapping cells in the
cellsite architecture. During simulation, fault models
inject failures into the cellsite or degraded conditions
into the geographical data.

We have implemented various teletraffic models, Fig-
ure 3, to define calling patterns with respect to call
arrival and holding times. One can choose among
various loads (in the same or different simulation
runs). A nominal load represents users’ demand for
channels equivalent to that for which the system was
optimally designed.

Figure 2. Averaged Blocking Rates versus Offered Load
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Our mobility model defines characteristics of how a
user moves among the geographical grid points, Fig-
ure 3.

Our results include use of two fault models, Figure
3. The channel failure model fails 75% of the channels
in specified cells for any time-period (models partial
hardware/software failure). The hot-spot model in-
creases offered load significantly beyond the nominal
value in specified cells for a specified time period
(models user congestion in the physical environment,
such as that caused by traffic surrounding a highway
accident, or people leaving a stadium event).

Example multilayer resource management policies
are also shown in Figure 3. Thus far, we have imple-
mented Adaptive Admission Control and adaptive Chan-
nel Access (CA) control algorithms [14, 15].

Ideally, a simulation analysis of these algorithms
would explore all simulation scenarios in terms of the

various models described. However, each model con-
tains multiple factors (variables that affect perfor-
mance results) that can take on multiple values. A full
factorial analysis [27] is not possible, and an approach
to design a fractional factorial set of experiments is
not clear. Thus, our approach in this work is to use
application domain expertise to design real-time
metrics for better understanding of adaptive resource
allocation policies. We turn to information visualiza-
tion techniques to assist us in viewing multiple real-
time metrics simultaneously within a highly interac-
tive environment, in order to facilitate the analysis of
such policies, as well as the design of new algorithms.

4. Visualization Framework
All visualizations have been constructed using the Vi-
sualization Toolkit (VTK) [28]. We are currently using
three types of visualizations,

1. color mapped planes, where the metric values are
mapped into a set of colors (we use a rainbow color
map, from blue to red),
2. height fields, where the height corresponds to a met-
ric value at a specific cell, and
3. parallel coordinates, where each metric is represented
as a separate vertical axis.

The cell site network used in our experiments con-
sists of 105 cells arranged in a square grid. A struc-
tured grid (a grid that is topologically a multidimen-
sional array, but its lattice points are not uniformly
spaced) is used to represent each metric. The geom-
etry of the grid can be displayed either as solid colors

Figure 3. Modeling framework

Figure 4. Cellsite Architecture
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or wireframe (which is useful in focusing on specific
cells) format; also, the hexagonal lattice structure can
be overlaid for better perspective of the cell site archi-
tecture.

The visualization system can look at all 16 metrics
within a single run (Figure 5-7), or be configured to
look at multiple runs with specified metrics (Figure 9
shows 4 runs with 4 metrics, with each run in a sepa-
rate row). The ability to look at multiple runs is espe-
cially useful in designing adaptation policies/algo-
rithms in terms of the metrics/parameters. Once the
simulation data is input to the visualization system,
the entire run can be animated and controlled using
VCR style controls (play, stop, forward step, back-
ward step, etc.). In the multi-run mode, the VCR con-
trols will affect all simulation runs, again permitting
direct comparison between simulation runs, param-
eterized by adaptation policies, algorithms or simula-
tion parameters.

A number of analysis tools are in use and in devel-
opment. For instance, it is possible to compute statis-
tics of a particular run (peak and average values of
the metrics over the entire run, variances, etc.). Any
metric value for a particular cell can be queried when
it is necessary to focus on a particular cell. The visual-
ization also allows tracking a small group of cells, for
instance, cells in the vicinity of a failure to focus on
spatial relationships.

5. Real-time Metrics
The objective of network monitoring is to identify the
current state of the system so that a resource adapta-
tion policy can be invoked that best maintains surviv-
ability for that state.  For this study, five system states,
also called system operating modes, are character-
ized—normal, degraded, transient failure, steady-state
failure, and recovery. Table 1 summarizes how metrics

were used to characterize and identify the systems
states as the offered load to the system varied among
light, nominal, heavy, and very heavy offered load val-
ues.

A normal mode implies that no explicit failure has
occurred. A degraded mode refers to a time during
which an explicit system failure may not be present,
but system performance is diminished due to envi-
ronmental reasons (e.g., increased demand in one cell
due to highway congestion resulting from a traffic ac-
cident or due to an event, such as people leaving a
football stadium). We generate a degraded mode us-
ing our hot-spot fault model, described in Section 3. A
transient failure mode refers to the time-period immedi-
ately following a failure when a system may be some-
what unstable while trying to maintain ongoing con-
nections affected by the failure. Steady-state failure
mode refers to the time period in which a fault still
persists, but the system has reached a somewhat
stable, though degraded mode of operation. A recov-
ery mode is the time period following failure, during
which a system attempts to reinstate normal usage
patterns. These latter three modes are generated using
our channel failure fault model. In addition, we will
define our survivability index in terms of the surviv-
ability objective in Table 2, in a later section.

The real-time metrics found to be most useful for
state characterization are defined next and explained
more fully in Section 6.

Metric Definitions
Each metric is measured as a sliding window variable.
The metric is evaluated at a rate determined by a
sampling_rate parameter, by calculating raw data over
a time period specified by a time_window_size param-
eter. The summation symbols in the equation that fol-

Table 1. Characterization of system states

System states Characterization
   Normal Little activity, arbitrary, sporadic increases in all metrics.
  Degraded Persistent spatial & temporal increase in oc, cu and in ct, and

Recurring spatial & temporal spikes in sum, hbr, and nbr
   Transient failure Spatial & temporal increase in dcr.
   Steady-state failure Persistent spatial & temporal decrease in cu and in ct, and

Recurring spatial & temporal spikes in sum, hbr, and nbr
   Recovery Recurring spatial & temporal dips in oc, cu, and ct.

Table 2. Survivability objectives

Survivability Objectives
o Handover blocking rate ≤ 1%
o New connection blocking rate ≤ 2%
o Minimize overall blocking rate
o Handover blocking rate equal to half of new

connection blocking rate
o Maximize carried traffic



108 SIMULATION SEPTEMBER-OCTOBER 2001

lows imply that data is summed over a period equal
to the time_window_size.

Handover blocking rate, hbr, is the percentage of
forced handover requests that are denied. A handover
request is considered to be forced, if denial of a chan-
nel will result in termination of the call.

    
hbr

forced handovers denied
forced handover requests

=
∑
∑

_ _
_ _ , 0 ≤ hbr ≤ 1

The derivative of hbr represents the rate of change
in hbr between successive samples of the metric.

    
hbr

hbr hbr

window size
time t time t′ = _ _ ±±

_
1

,   hbr′ ∈ ℜ

Similarly, new connection blocking rate, nbr, and its
derivative represent the percentage of new connection
requests that are denied, and the rate of change of this
value.

    
nbr

new connections denied
new connection requests

=
∑
∑

_ _
_ _ , 0 ≤ nbr ≤ 1

    
nbr

nbr nbr
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time t time t′ = _ _ ±±
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,   nbr′ ∈ ℜ

Because of the nature of voice traffic, which cur-
rently dominates our teletraffic model, the hbr and nbr
values are bursty in nature. Therefore, we are also in-
terested in looking at the real-time sum of these val-
ues, as measured with the sum metric. The assump-
tion is that a significant increase in both metrics at the
same temporal and spatial location more likely con-
veys a problem rather than a random burst.
The blocking ratio metric, br, is an indicator of how
well the system is managing to meet the survivability
objective of keeping a 0.5 ratio of handover blocking
rate to new connection blocking rate. A br = 0 is most
desirable as it indicates that either the hbr/nbr ratio is
0.5, or that hbr and nbr are within the desired range,
less than 1% and less than 2%, respectively.
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The dropped connections rate metric, dcr, measures
the number of connections that are prematurely ter-
minated due to something other than a failed
handover attempt.

    
dcr

dropped connections
output size channels used

=
∑

∗ +
_

_ ( _ )1 Σ , dcr ≥ 0

For the failure models that we have used, a connec-
tion is terminated if the channel being used fails.  We
experimented with various strategies to determine

how to view the number of dropped connections, e.g.,
as an absolute value, or with respect to time or offered
load. We determined that a ratio of
dropped_connections to offered load provided the
most meaningful values. As such, the denominator of
dcr represents a scaled estimate of offered load. That
is, the denominator is an estimate of the offered load
in Erlangs divided by 3600. (1 Erlang is equal to usage
of one channel for 1 hour, which is 3600 seconds.) The
output_size parameter is the rate at which raw data is
sampled. We estimate channel usage by assuming
that if a channel is in use at the time of sampling, then
the channel has been in use since the prior sample.

The offered connections metric, oc, measures the
rate of new connection arrivals with respect to time.
Later we will demonstrate how oc is very useful in
illustrating the behavior of our distributed adaptive
CA algorithm. We experimented with measuring of-
fered load in units of Erlangs (as we do for carried
traffic). Offered connections measures arrival of new
connections without regard to connection bandwidth
or length, while offered load considers bandwidth and
length. However, only oc proved useful for this cur-
rent study.

    
oc

new connection requests
window size

=
∑ _ _

_ , oc ≥ 0

The carried traffic metric, ct, is an estimate of the
carried load in units of Erlangs. Note that offered load
is capacity demanded by users, while carried load or
traffic is capacity actually delivered to users by a sys-
tem.

    
ct

channels used output size

seconds hour
=

∑( ) ∗_ _

/3600 , ct  ≥ 0

The channel utilization metric, cu, is an estimate of
the percentage of channels used with respect to time.

    
cu

channels used output size

window size
=

∑( ) ∗_ _

_
,

0 ≤ ct ≤ maximum channels
The handover activity rate metric, har, represents

the number of successful forced and voluntary (de-
scribed later) handovers with respect to time.

    
har

number of handovers
window size

=
∑ _ _

_ , har ≥ 0

We define a survivability index, SI, as a measure of
how well the system meets the survivability objec-
tives specified in Table 1. Most current wireless net-
work providers aim to maintain handover and block-
ing rates below 1 and 2 percent. From a user’s
perspective, terminating an ongoing connection is
perceived to be a worse problem than blocking of a
new connection attempt. However, keeping an ex-
tremely low hbr is only achievable by allowing an ex-
tremely high nbr. As such, since hbr and nbr blocking
rates will exceed desired values during failure or con-
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gestion conditions, the objective is to maintain a 0.5
hbr/nbr ratio. Lastly, since carried traffic represents
network provider revenue, an objective is to maxi-
mize this value.

Based on these objectives, we define the following
survivability index, where optimum survivability is
achieved when SI = 0.

    
SI h

k A k B k C
kii

i= + +
∑


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
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, 0 ≤ SI ≤ 1,

    A br= ∗2 , 0 ≤ A ≤ 1,

    
B

hbr nbr= +
2

, 0 ≤ B ≤ 1,

    
C

cu maximum channels
maximum channels

=
± _

_ , 0 ≤ C ≤ 1.

6. Experiments
In Section 6.1, we demonstrate how the visualizations
proved essential for state characterization of mobile
network simulations that incorporate all of the mod-
els described in Section 3. (Initially, we use a resource
management model that includes our adaptive chan-
nel access scheme and no admission control.) The vi-
sual appearance of each metric during normal mode
is described. An explanation of the metrics that char-
acterize abnormal modes is then given. The effects of
teletraffic loading conditions are discussed through-
out, and summarized in a separate section, followed
by a section discussing the effects of varying sampling
rate and time window size. In Section 6.2, we discuss
potential survivability strategies that could be in-
voked during each state and give specific examples
for adaptive admission control and channel access
control.

6.1 State Characterization

6.1.1 Normal Mode
Snapshots of normal mode are shown in Figure 5. (Re-
fer to Figure 10 for the color map.) The optimal value
for blocking rate metrics hbr, nbr, and sum is zero—
visualized by a flat dark blue color. During simulation
of a lightly loaded system, hbr, nbr, and sum will pri-
marily remain flat and dark blue, with occasional
lighter blue bumps indicating normal bursty traffic.
This agrees with our intuition since even in a lightly
loaded system some, blocking will occur as random
call arrivals may occasionally cluster in the same cell,
causing resources to be depleted. The sum metric
helps to filter out some randomness, since in the ab-
sence of faults, it is less likely that hbr and nbr will
burst at the same spatial and temporal instant. During
simulation of a heavily loaded system, all three
metrics become increasingly bursty. The animation
displays lighter blue bumps moving among all cells,

with an occasional larger, more orange peak in a par-
ticular cell.

Under light loading, the blocking rate derivative
metrics,   hbr′  and   nbr′ , are mostly flat green with an
occasional color spot. These metrics can take on posi-
tive or negative values. A zero value indicates no
change (which corresponds to green on a blue to red
rainbow color scale). As loading increases and hbr and
nbr become more variable,   hbr′  and   nbr′  become
slightly more colorful, indicating sharp rises and dips
in hbr and nbr values.

The aim of br is to illustrate the degree to which the
network meets the survivability objective of maintain-
ing a 0.5 ratio for hbr/nbr. This ratio is managed by ad-
mission control.  br varies between [-0.5,+0.5]. There-
fore, a br that is flat green indicates that the blocking
ratio objective is being met in real-time. A spike up
towards red indicates that hbr is too high relative to
nbr (i.e., our performance has degraded). Conversely,
a downward spike towards blue indicates that nbr is
relatively too high (i.e., our cost has degraded). Later,
we describe how our adaptive admission control algo-
rithms managed this cost/performance tradeoff.

The dcr metric measures dropped calls and varies
from zero only during transient failure mode. The oc
metric displays new connections arriving to cells and
the har metric displays handovers occurring within
each cell. The cu metric displays channel utilization at
each cell. oc, har, cu, and ct are useful for illustrating
the behavior of our load-based adaptive channel ac-
cess (CA) protocol, as described in Section 6.2. ct is
similar to oc, which indicates that for normal opera-
tion, carried traffic does not vary greatly from offered
load. The values of oc, har, cu, and ct increase with of-
fered load. The visual appearance of the metrics main-
tains a spatial uniform look as the color of each metric
moves towards red.

6.1.2 Degraded Mode
Snapshots of degraded mode caused by a 20 minute
hot-spot in a cell in the very center of the cellsite grid
are given in Figure 6. The presence of the hot-spot is
most clearly characterized by spatial and temporal
changes in metrics oc, cu, ct, sum, hbr, and nbr (Table
1). A spatial change implies that the value of the met-
ric at one cell varies significantly from the value of the
same metric at neighboring cells. A temporal change
implies that the value of the metric at one cell varies
significantly as compared to a long-term average of
the value of the metric at the same cell over a recent-
past time interval. The visualization animations be-
tween the times of each snapshot in Figure 6 show
that the spatial and temporal increase in oc, cu, and ct
are persistent, meaning their values remain at an in-
creased level for a relatively long time period. The
animations between the two snapshots also show that
increases in sum, hbr, and nbr, are recurring, meaning
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that their values oscillate from a noticeable high to a
lower value within a relatively small timeframe.
(Note that this is not the same as an arbitrary random
spike.)

6.1.3 Transient Failure Mode
Snapshots of transient failure mode caused by a 20-
minute failure of channels in a cell in the very center
of the cellsite grid are given in Figure 7. The onset of
the failure is identified by a sharp temporal increase
in the dcr metric. We could also consider the spatial
value of dcr to help identify the location of the failure
within the mobile network, e.g., an increase in dcr in a
single cell could indicate a problem at the cell
basestation, while an increase within multiple adja-
cent cells could indicate a problem at the basestation
controller or mobile switching center (which connect
multiple basestation to the fixed network).

6.1.4 Steady-state Failure Mode
As noted in Table 1, this mode is characterized by per-
sistent spatial and temporal decreases in cu and ct,
and recurring spatial and temporal spikes in sum, hbr,
and nbr. (Snapshot not shown.)  The “look” of sum,
hbr, and nbr for steady-state failure is similar to that
for degraded mode. However, these two modes are
distinguished by whether ct and cu increase or de-
crease. The former implies that congestion results
from an unexpected increase in user demand, while
the latter implies that congestion results from an un-
expected reduction in cell resources. It is important to
make this distinction since one might invoke different
survivability strategies for each mode.

6.1.5 Recovery Mode
As listed in Table 1, this mode is characterized by re-
curring spatial and temporal rises and dips in oc, cu,
and ct metrics. The sum, hbr, and nbr metrics gradu-
ally return to their normal look. Actually, we ex-
pected that all of the unusual looking metrics would
gradually return to their normal look during recov-
ery.  However, cu and ct exhibited a series of high to
low oscillations that seemed to be exacerbated under
heavier loading conditions. This very surprising dis-
covery required further investigation, which we
elaborate upon in Section 6.2.

6.1.6 Effects of Offered Load
The visual appearance and the measured values of
some of the real-time metrics vary significantly with
offered load. This affects state characterization across
varying loads. For example, bursty metrics such as hbr
and nbr become more bursty under increased loads.
During very heavy loading, peak values of these
metrics increase in normal cells, and decrease in failed
cells as compared to peak values during light loading.
The reason for the decrease is that with greater of-

fered load, the impact of each blocked call is dimin-
ished (i.e., the denominator of hbr and nbr equations
becomes larger, but the numerator remains the same).
For our experiments, oc, cu, and ct remain basically
unchanged over variations in offered load. As such,
we conclude that the characterization of each of the
five modes in Table 1 holds across all four offered
loads considered. However, our continuing efforts are
to measure each metric as a function of offered load to
provide more robust metrics.

6.1.7 Effects of Metric Measurement
We experimented with various values of sampling
rate and time window size to determine the best fre-
quency and time period over which to measure real-
time metrics. A larger time window size causes the
visual appearance of bursty metrics to become
smoother and diminishes the impact of peaks, espe-
cially those that indicate abnormal conditions (e.g.,
dcr). A smaller time window size has the opposite ef-
fect. If the time window size is too small, it is impos-
sible to distinguish between bursty activity and fail-
ure. If it is too large, failure is masked. For a given
time window size, variations in sampling rate only
affect how quickly a failure is detected (i.e., resolution
of failure time is proportional to sample rate).  In gen-
eral, a large range of values is acceptable and does not
dramatically alter the look and usefulness of each
metric.

6.2 Survivability Strategies
We next consider the use of state characterization for
survivable adaptive resource management in two
ways. One, our adaptive algorithms use state charac-
terization for network monitoring. Two, the visualiza-
tions proved to be an essential aid for design/debug
of our adaptive algorithms. The visual animations en-
abled us to quickly understand algorithm behavior
and dramatically reduce the time taken to evaluate
various algorithm design and parameter choices. We
discuss examples of our adaptive channel access and
adaptive admission control protocols. As previously
explained, our survivability objective is given in Table
2.

6.2.1 Adaptive Channel Access Example
Our system model (Section 3) is such that a mobile
user moves among grid points in the geographical
data set. A mobile user in need of a channel will con-
sider the channel utilization, cu, at the basestation of
each cell that overlaps the user’s grid point. The mo-
bile will request a channel from the basestation with
the lowest cu (assumed to be most lightly loaded). In
addition, mobile users periodically compare cu values
at all accessible cells, and may request a voluntary
handover if one of these cells has significantly lower
cu. (Details are in [14, 15].) Therefore, the normal
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mode appearance of oc, har, cu and ct, as smallish
bumps, with a uniform spatial distribution, confirms
that our load-based CA algorithm is indeed evenly
distributing load throughout the network.

In degraded mode, we detect an expected increase
in oc, cu, and ct in the faulty cell, and an increase in
these metrics in cells surrounding the faulty cell. This
further confirms operation of our CA algorithm. As a
cell becomes overloaded, it will attempt to offload
calls in overlap regions to its neighboring cells. Dur-
ing failure mode, cu and ct decrease, since less traffic
is being carried by the cell that has lost most of its
channels (a failed channel cannot be considered to be
“in use”).

The most surprising discovery as to the behavior of
our CA algorithm came from further investigation of
recovery mode behavior of oc, cu, and ct. The oscilla-
tion of these metrics during recovery did not match
our intuition. As soon as all failed channels are re-
stored in a cell, the cell immediately has lower cu val-
ues as compared to its neighbors. Therefore, we ex-
pected oc to continue increasing in the restored cell
until cu and ct in the restored cell matched those val-
ues in its neighboring cells. Then we expected oc, cu,
and ct to return to their normal appearances. Instead,
we found that each of these metrics would oscillate
(to unexpectedly low values) for up to 30 minutes be-
yond the point of restoration.

A detailed analysis uncovered that a sudden fluc-
tuation in cu causes our CA algorithm to generate un-
necessary voluntary handover activity. Immediately
following recovery (Figure 8, far left), the failed cell’s
cu returns to green (lower loading) as it picks up load
with newly restored channels. However, soon after
(Figure 8, center left), the cell drops to deep blue,
while its neighbors turn red. This indicates that the
restored cell became overloaded, as compared to its
neighbors, and off-loaded calls using voluntary
handover. However, too many calls were off-loaded,
leaving the cell under-utilized. Thus, the cell returns
to green again (Figure 8c, center right) and repeats the
cycle (Figure 8, far right). We attempted to fix this os-
cillation through our restoration model. Rather than
restore all failed cells simultaneously, we experi-
mented with restoring channels over a period of time
(up to 30 minutes). A longer restoration period
slowed the oscillation cycle, but did not completely
solve the problem. As such, we are looking at ways to
further modify our CA algorithm to better adapt to
recovery mode.

6.2.2 Adaptive Admission Control Example
Our basic approach to adaptive admission control
(AAC) is to vary the size of a guard band maintained
at each cell. The guard band specifies a percentage of
channels, called δ, that should be set-aside for
handover requests and not allowed for use by new-
connection requests. This enables one to manage a

tradeoff between hbr and nbr (details are in [15, 16]).
There are a great many ways to implement AAC.
Each approach consists of monitoring a real-time met-
ric, comparing its value to upper/lower threshold val-
ues, and then increasing or decreasing δ based on this
comparison. We experimented with 4 AAC algo-
rithms, called AAC1, AAC2, AAC4, and AAC5.
These monitor hbr,   hbr′ , br, and   br′ , respectively. Fig-
ure 9 shows metrics hbr,   hbr′ , and br, along with the
real-time value of δ. (AAC 1, 2, 4, 5 occupy rows 1, 2,
3, 4, respectively of the snapshot.)  The performance
of each algorithm varies significantly depending on
the choice of upper and lower threshold values.  The
responsiveness of each algorithm to abnormal condi-
tions also varies greatly. Looking at averaged simula-
tion results revealed differences in performance, but
gave little insight into the cause of such differences.

The visual animations provided quick, powerful
insight.  For example, the AAC2 and AAC5 that use
derivative values are extremely sensitive to minor
changes in threshold values. In many instances the
value of d would increase in response to burst activity
in normal mode. The value of δ would then remain
“stuck” at an unnecessarily high value for a long time.
Also, these algorithms are less sensitive to degraded
mode, which is characterized by a more gradual in-
crease in metric values (rather than quick rate of
change). Thus, in general, using derivatives caused
too many false reactions in normal mode, and non-
responsiveness in fault modes.

The algorithms that used actual values, AAC1 and
AAC4, were more responsive, meaning that the value
of δ was increased when needed and decreased when
not needed. However, the optimum setting of thresh-
old values is different for different values of offered
load.  Also, at higher loads, metric spatial relation-
ships are more important to help distinguish faulty
states. With the help of the visualization, our study on
AAC algorithms continues.

6.2.3 Survivability Index
We are also studying the development of a survivabil-
ity index (SI). The SI function used is described in Sec-
tion 5. As shown in Figure 10, the visualization en-
ables us to evaluate the real-time contribution of
individual components (e.g., A, B and C) on the SI
function.

7. Conclusions
In this work, we have taken the first step in perform-
ing a systematic evaluation of adaptive techniques for
comprehending the complex behavior of mobile net-
works under a variety of network conditions, and in
particular, during failures. In contrast to most current
work, we look at real-time metrics with the aid of
multi-variate visualization schemes to not only design
and evaluate adaptive algorithms, but also to under-
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Figure 5. Normal Mode – Left: Lightly Loaded; Right: Heavily Loaded

Figure 6. Degraded Mode Snapshots – Left: Onset of Hotspot; Right: 600 Seconds Later

Figure 7. Transient Failure Mode Snapshots – Left: Onset of Failure; Right: 300 Seconds Later
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Figure 9. Comparing AAC 1, 2, 4, and 5

Figure 10. Survivability Index Components (si_A, Si_B, and si_C) and Function (si)

Figure 8. CU Oscillations During Recovery Mode
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stand algorithm behavior across a large number of
states. Visualization permits us to abstract the essence
of large amounts of data, which is an inevitable out-
come of using real-time metrics over long simulation
runs.

We have introduced a number of real-time metrics
that have been found be useful in influencing adap-
tive algorithms and for network monitoring. In par-
ticular, we have made progress in identifying and
characterizing critical states of the network in terms of
these metrics, and these will form the basis to a sound
understanding of survivability of mobile networks.

Our experiments already revealed a problem with
our channel access algorithm, which simply would
not have been possible without the use of real-time
metrics and interactive visualization. Such insights,
coupled with domain expertise and the assistance of
visualization, can make the analysis process very effi-
cient. We also demonstrated how various adaptive
admission control strategies can be quickly compared
and contrasted with the help of the visualization sys-
tem and better understanding of the influence and
sensitivity of each metric on performance and cost.

In addition to continuing our investigation into
tuning the metrics proposed in this work and design-
ing better adaptive algorithms, the work on state
characterization will be followed by specific algo-
rithms to permit automatic feature detection and in-
vocation of adaptation policies. Work on better under-
standing of the survivability index requires further
investigation, especially for comparative analysis
across multiple layers.

While the use of visualization tools in and of itself
has proved to be of immeasurable value, work on
building visualizations that are custom designed to
the challenges facing mobile networks will be pur-
sued in the future. The current visualizations display
metric values in isolation. It is also important to ex-
plore spatial and temporal relationships in a more ex-
plicit fashion, for instance, between cells within a cer-
tain neighborhood or look at multiple metrics in
combination.
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