Network visualization techniques and evaluation

Mohammad GHONIEM
The Charlotte Visualization Center
University of North Carolina, Charlotte

March 15th 2007
Outline

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Outline

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Outline

1. Definition and motivation of Infovis
2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data
3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs
4. Conclusion
Outline

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Information Visualization

Definition

- A compact graphical representation
- A graphical user interface
- For the visualization and interaction with large numbers of items that may be a subset of an even larger dataset.
Information Visualization

Scope and usefulness

- Bears on data that are:
 - abstract, multi-dimensional, structured or unstructured.
- in order to:
 - Make discoveries, decisions, find explanations, or communicate about
 - visual patterns (trends, clusters, outliers, . . .)
 - groups of items,
 - individual items.
Information Visualization

Historical background

- Considerable leap in hardware technology and capabilities
 - Production and storage of large volumes of data;
 - Increased processing capabilities;
 - Improved display capabilities.

- Birth of data mining
 - Mathematical and statistical data analysis;
 - Visual information exploration.
Information Visualization

Principles and role

- Make the best use of human vision
 - detect patterns,
 - sense correlations,
 - confirm an intuition or formulate hypotheses.
- Make the best use of user’s expertise
 - interactive exploration,
 - interactive construction of views.
- Precedes but does not replace classical *data mining*.
- Provides robust solutions for the most frequent data structures.
Organisation

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Tree Visualization Techniques

2D representations

- Node-link diagrams (cartesian / circular)
- Space-filling techniques (treemaps, icicle trees, circular)
- Non-euclidian space (hyperbolic trees)

3D representations

- Node-link diagrams (cone trees)
- Non-euclidian space (hyperbolic trees)
Overview of Tree Visualizations
Organisation

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Graph theory basics

Definitions

- $G = (\mathcal{V}, \mathcal{E})$,
- $\mathcal{E} = \{(u, v)\}$, where $(u, v) \in \mathcal{V} \times \mathcal{V}$,
- two vertices are *adjacent* if they are connected by an edge,
- an edge is *directed* if an order is defined on its extremities,
- a graph is *directed* if its edges are directed,
- a *directed path* is a sequence of vertices (v_1, \cdots, v_k) where $(v_i, v_{i+1}) \in \mathcal{E}$ $\forall i < k$,
- a directed path is a *cycle* if $(v_k, v_1) \in \mathcal{E}$,
- a directed graph is *acyclic* if it is cycle free,
- a graph is *planar* if it has an intersection free 2D drawing.
Graphs are ubiquitous

Examples

- Infrastructure networks (telecommunications, power, roads).
- Social networks (acquaintances, crime networks).
- Co-citation network, etc.
Graphs and representations

Definition

- a graph is an abstract entity ≠ its representations.

Layout

Mohammad G HONIEM

Network visualization techniques and evaluation
Graph visualization techniques

Visualization techniques
- Node-link diagrams,
- Adjacency matrices.

Aesthetic rules and drawing conventions
- Drawing conventions: polyline drawing, grid drawing, upward/downward etc.
- Aesthetic rules: min. intersections, min. edge length, min. area etc.
- Some rules are conflicting.
- Some user studies and experiments (H. Purchase, C. Ware).
Graph visualization techniques

Graph drawing approaches

V={1,2,3,4,5,6}
E={(1,2),(1,5),(1,6),
(2,4),(2,5),(2,6),
(3,4),(3,5),(3,6)}
Graph visualization techniques

Graph drawing approaches
Graph visualization techniques

Graph drawing approaches
Graph visualization techniques

Graph drawing approaches

Network visualization techniques and evaluation
Graph visualization overview

Mohammad Ghoniem

Network visualization techniques and evaluation
Graph visualization frameworks

Existing frameworks

- Tulip (University of Bordeaux – France),
- Pajek (University of Ljubljani – Slovenia),
- GraphViz (AT&T),
- JUNG (University of California, Irvine).
Graph visualization techniques

Node-link diagrams

- Widespread and well studied wrt sparse graphs.
- Cluttered views when link density increases.
- Instable layout algorithms
- Unusable for dynamic graphs.
- Begs for an alternate representation.
Monitoring co-activity graphs

Variables + Constraints

X

Y

Z
Monitoring co-activity graphs

Variables + Constraints

\[X \rightarrow c_1 \rightarrow Y \rightarrow Z \]
Monitoring co-activity graphs

Variables + Constraints

\[X = 2 \]
\[X = 3 \]

Constraints:
\[c_1 \]
\[c_2 \]
\[c_3 \]

Network visualization techniques and evaluation
Monitoring co-activity graphs

Variables + Constraints

Variables
Monitoring co-activity graphs

Variables + Constraints

- X
- Y
- Z

Constraints:
- c_1
- c_2
- c_3

Variables

- X
- Y
- Z

Constraints

- c_1
- c_2
- c_3
Monitoring co-activity graphs

Variables + Constraints

- X with c_2, $X = 2$
- Y with c_2 and c_3, $X = 3$
- Z

Variables

- X connected to Y and Z
- Y connected to Z

Constraints

- c_1
- c_2
- c_3

Mohammad Ghoniem

Network visualization techniques and evaluation
Monitoring co-activity graphs

Variables + Constraints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>c_2</td>
</tr>
<tr>
<td>Y</td>
<td>c_1</td>
</tr>
<tr>
<td>Z</td>
<td>c_3</td>
</tr>
<tr>
<td>X = 2</td>
<td></td>
</tr>
<tr>
<td>X = 3</td>
<td></td>
</tr>
</tbody>
</table>

Variables

- X
- Y
- Z
- X = 2
- X = 3

Contraintes

- c_1
- c_2
- c_3

Network visualization techniques and evaluation
Monitoring co-activity graphs

Variables + Constraints

\[X \]
\[Y \]
\[Z \]
\[c_1 \]
\[c_2 \]
\[c_3 \]
\[X = 2 \]
\[X = 3 \]

Variables

\[X \]
\[Y \]
\[Z \]
\[X = 2 \]
\[X = 3 \]

Contraintes

\[X = 3 \]
\[X = 2 \]
\[c_1 \]
\[c_2 \]
\[c_3 \]
Co-activity graphs

The 8 queen problem
Co-activity graphs

The 8 queen problem

Co-activity graph

Mohammad G. HONIEM

Network visualization techniques and evaluation
Organisation

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Matrix-based representation of graphs

Un graphe orienté comportant quatre sommets

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Matrice d’adjacence équivalente

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Représentation matricielle
Matrix-based representation of graphs

Strengths
- Relies on a well-known mathematical representation.
- No clutter nor occlusion.
- Orderable, predictable for most common order relations.
- Displays existing and missing links.

Shortcomings
- Unfamiliar visualization.
- Not effective for path related tasks.
Matrix-based representation of graphs

Strengths

- Relies on a well-known mathematical representation.
- No clutter nor occlusion.
- *Orderable, predictable* for most common order relations.
- Displays existing and missing links.

Shortcomings

- Unfamiliar visualization.
- Not effective for path related tasks.
Matrix-based representation of graphs

Strengths
- Relies on a well-known mathematical representation.
- No clutter nor occlusion.
- Orderable, predictable for most common order relations.
- Displays existing and missing links.

Shortcomings
- Unfamiliar visualization.
- Not effective for path related tasks.
The matrix of Bertin
Cluster revelation through permutations

Orderability magic
Cluster revelation through permutations

Orderability magic

The matrix-based representation of graphs
Application to constraint-oriented programming graphs

Network visualization techniques and evaluation
Matrix-based representation of graphs

Properties of matrices
Matrix-based representation of graphs

Multi-scale self-contained visualization
Matrix-based representation of graphs

Multi-scale self-contained visualization
Definition and motivation of Infovis
Visualization of structured data
Visualization of dense and dynamic networks
Conclusion

The matrix-based representation of graphs
Application to constraint-oriented programming graphs

Matrix-based representation of graphs

Multi-scale self-contained visualization
Matrix-based representation of graphs

But...

How readable is the matrix-based representation?
Evaluation of the readability of matrices

Principe
- Compare two alternative representations of graphs wrt
- A predefined list of common tasks,
- A set of graphs of variable sizes and link density.
- The readability is measured according to two indicators:
 1. answer time;
 2. error rate.
Evaluation of the readability of matrices

Taxonomy of tasks

- Tasks related to the overview.
- Tasks related to vertices.
- Tasks related to links.
- Tasks related to paths.
- Tasks related to subgraphs.
Evaluation of the readability of matrices

Seven tasks

1. Estimate the number of vertices.
2. Estimate the number of links.
3. Find the most connected node.
4. Find a node by its name.
5. Say whether two links are connected.
6. Say whether two nodes have a common neighbor.
7. Find a path between two nodes.

A few observations about the tasks

- A minimal selection of tasks.
- Primitive tasks.
Evaluation of the readability of matrices

Experimental precautions

- Preliminary demonstration and training stage.
- Guidelines: answer fast and right, may skip questions if too difficult.
- Two two-fold sessions.
- Three breaks (5 min, 10 min, 5 min).
- Equalize weariness effects.
- Equalize learning effects.
- Bounded answer time (45 sec. max.)
Evaluation of the readability of matrices

Setup

- Nine random graphs with increasing size and link density.
- Use neato/graphviz package for node-link diagrams.
- Matrix-based representation in OpenGL/Java.
- Presets to the best advantage of each representation.
- Minimal interaction (node and link highlights).
Evaluation of the readability of matrices

Highlight and selection of nodes and links
Evaluation of the readability of matrices

User population and result analysis

- 36 Ph.D. students or assistant professors in computer-science.
- Analysis: quantitative
Evaluation of the readability of matrices

User population and result analysis

- 36 Ph.D. students or assistant professors in computer-science.
- Analysis: quantitative
Evaluation of the readability of matrices

User population and result analysis

- 36 Ph.D. students or assistant professors in computer-science.
- Analysis: quantitative and qualitative
Evaluation of the readability of matrices

User population and result analysis

- 36 Ph.D. students or assistant professors in computer-science.
- Analysis: quantitative and qualitative + 3D model.
Evaluation of the readability of matrices

Results
- Better results with the matrix-based representation for 6/7 tasks wrt dense graphs, large graphs.
- Node-link diagrams are preferable for small sparse graphs.
- Path related tasks are difficult to carry out.

User reactions
- Not so enthusiastic in the beginning, except a few.
- Very positive at the end of the evaluation, except a few.
Organisation

1. Definition and motivation of Infovis

2. Visualization of structured data
 - Visualization of hierarchical data
 - Visualization of network data

3. Visualization of dense and dynamic networks
 - The matrix-based representation of graphs
 - Application to constraint-oriented programming graphs

4. Conclusion
Visualization of constraint-oriented programming graphs

Properties of such graphs

- Very densely connected.
- Large.
- Complex temporal relations between nodes.

Visualization solution

- Matrix-based representation:
 - no clutter,
 - space-filling technique,
 - adapted for focus + context techniques (fisheye),
 - multi-scale representation (clustering + aggregation).

- History animation through dynamic queries,
Monitoring of dynamic graphs: example 1

Pedagogical problem (sort 100 variables)

- 100 variables \(x_i \in [1,100] \) in [1, 100].
- 99 constraints: \(\forall i \in [1, 99], x_i < x_{i+1} \).
Monitoring of dynamic graphs: example 1

Constraint graph of the sort problem
Monitoring of dynamic graphs: example 2

alldiff constraints problem
Monitoring of dynamic graphs: example 2

Automatic segmentation and animation of the solving process
Problem structure investigations

Aid for debugging and fine-tuning of programs

- 3 sets of variables with strong internal links.
- Problem structure is visible at the end of propagation phase.
- Link density has no negative impact on the clarity of the overview.

Variables × Variables

3 sets of variables with strong internal links.
Problem structure investigations

Aid for debugging and fine-tuning of programs

- *Mindom* heuristic executed during 2 minutes and interrupted.
- Sets #1 and #2 have a strong impact on set #3.
- Weak links mislead the solver into bad decisions.

![Matrix representation of variables](image)
Problem structure investigations

Aid for debugging and fine-tuning of programs

- Normalized view.
- Initial infrequent decisions appear in dark.
- Poor decisions involve set #2.

Variables \times Variables

Network visualization techniques and evaluation
Problem structure investigations

Aid for debugging and fine-tuning of programs

- Discard gradually the effects of old decisions.
- The solver is trapped into a costly enumeration on sets #1 and #3 because of a bad decision taken wrt to set #2.
Aid for debugging and fine-tuning of programs

- Adapt the *mindom* heuristic.
- Discard constraints causing an abnormal volume of activity.
- The problem is solved immediately.
Instance 4 of Mycielski

- Variables 11 to 21 are not linked, obvious on a matrix.
- The problem can be split into two sub-problems.
Investigation of complex problem: graph coloring

Instance 5 of Mycielski

- The structure of the problem is recurrent.
- An incremental resolution strategy can be very effective.

Variables \times Variables
Information visualization

- The purpose of information visualization is insight.
- The choice of a visualization metaphor depends on the nature of the data and the tasks at hand.
- Large and/or dense networks are best viewed as adjacency matrices.
- Dynamic graphs are best monitored as adjacency matrices.