
CHIMERA: Autonomous Planning and
Orchestration for Malware Deception

Md Mazharul Islam∗, Ashutosh Dutta∗, Md Sajidul Islam Sajid∗,
Ehab Al-Shaer†, Jinpeng Wei∗ and Sadegh Farhang†

∗Department of Software and Information Systems, University of North Carolina at Charlotte, NC, USA
†Software Research Institute, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

∗{mislam7, adutta6, msajid, jwei8}@uncc.edu, †{ehabalshaer, sfarhang}@cmu.edu

Abstract—Cyber deception is a promising defense that can
proactively mislead adversaries and enables a unique opportunity
to engage with them to learn new attack tactics and techniques.
Although cyber deception has been around for more than a
decade, static configurations and the lack of automation made
many of the existing deception techniques easily discoverable
by attackers and too expensive to manage, which diminishes
the value of this technology. Sophisticated Advanced Persistent
Threats (APTs) are highly dynamic and thereby require a highly
adaptive and embedded deception that can dynamically create
honey resources and orchestrate the deception environment
appropriately according to the adversary behavior in real-time.
This paper presents a theoretical framework and implementa-
tion for an autonomous goal-oriented cyber deception planner,
called CHIMERA, that optimizes deception decision-making.
CHIMERA agents can reside in any production machine/server
and automatically create and orchestrate the deception ploys
to steer and mislead the malware or APT to the desired goal
without human interaction. The deception ploys are dynamically
composed based on the deception planning while ensuring safe yet
fast deployment and orchestration of deceptive course-of-actions.
We evaluated our deception framework with real APT attacks for
information stealing, ransomware, Remote Access Trojans (RAT),
and others. In these case studies with 4,578 real malware samples,
we showed that CHIMERA’s adversary-aware dynamic deception
strategies were able to effectively accomplish the deception goals
within a few seconds and with minimum cost.

I. INTRODUCTION

Cyber deception is a paradigm that aims to work beyond
traditional detect-then-prevent approaches. In cyber deception,
the defender intentionally conceals or falsifies the real config-
uration of the system’s parameters (e.g., network topology, IP
addresses, hardware IDs, registry keys, and so on) to create
uncertainty and confusion for the adversary to mislead their
perceptions and decision processes. The state of the art of
cyber deception mainly focuses on developing high fidelity
decoy systems that work as a standalone sandbox or virtual
machine (VM) [1], [2], [3]. These decoys have fake files, user
accounts, credentials, and more. If the adversary interacts or
exfiltrates such honey resources, the defender gets alerts.

However, the goal of cyber deception is beyond just to
catch attackers into VMs by setting up several traps. For
instance, if the adversary has already penetrated the real
system or fingerprinted the VMs to avoid, then static and
decoy VM based deception techniques become ineffective [4],
[5], [6]. Therefore, it is necessary to understand the distinct

Reconnaissance Initial Access Execution Credential
Access

Privilege
Escalation

Collection

Discovery Lateral
Movement

Command and
Control Exfiltration

Fig. 1: APT kill-chain model.
goals of deception to design an augmented reality that can
be embedded with real systems. Firstly, cyber deception can
be used to divert the adversary away from the real target
to a false or no target when the adversary is already in the
system—e.g., providing honey files [7] while the attacker
searches for sensitive files. Secondly, the defender can distort
the adversary’s perception of the infrastructure by adding
ambiguity into the system, e.g., running fake services with
obvious vulnerabilities (honey-patches [8]). Thirdly, cyber
deception can deplete adversary’s computational power and
resources to delay the attack propagation—for example, honey
encryption [9] of the credential files, which the adversary
needs to decrypt. Finally, the defender can discover new attack
tactics, techniques, and procedures (TTPs) by letting them
execute different attack actions in contained honey resources.

Existing deception techniques are mainly developed to
stop the attacker in a specific kill-chain phase. For instance,
network-level deception techniques like redirecting malicious
traffic to decoys [10], or generating a mystified response
against probing [11] can protect reconnaissance. However,
very few deception frameworks provide a deception com-
position strategy to defend APT actors in every kill-chain
phase [12], [10]. Nevertheless, most honeypots and decoy
systems are left behind with static deployment and config-
urations [13], [10], which skilled attackers can easily evade.

To address these limitations, we introduced CHIMERA,
an autonomous framework that computes optimal cyber de-
ception planning in real-time. CHIMERA relies on existing
attack behavior from the MITRE ATT&CK [14] framework
that classifies adversary actions into tactics, techniques, and
procedures (TTP), which form a chain called TTP kill-chain.
An example of a TTP kill-chain is shown in Fig. 1. Utilizing
the knowledge base of existing APT behaviors, CHIMERA
designs a deceptive environment through composing deception
techniques, that achieves 4D deception goals (divert, distort,
deplete and discover). CHIMERA deceives APT actors at
every kill-chain phase. Although CHIMERA can be used
to compose deception strategies for sandboxes or VMs, the

AlertsIDS/API
MonitoringMITRE ATT&CK

Malware Trace

Threat Reports

Deception
Graph

Generator

Deception Policy
Definition

ATT&CK Tech.

Deception Graph

Deception Policy

Policy
Generation

Engine

Policy
Requirements

APT Actor
Embedded Deception Environment

Deception
Action

Deception
Agent

Honey Factory

Production
Machine

API
Hooking

Malicious
activity

Attack
Action

Fig. 2: CHIMERA Architecture.

novelty of the framework is to design deception environments
that can be embedded with production machines to deceive
APT attacks in real-time.

Developing such an embedded deception framework is
challenging. First, APT actors are adaptive, who can detect and
evade existing static deception techniques. Therefore, there is a
risk associated with the failure of defense actions in an embed-
ded deception environment, leading to a potential compromise
of the system. Second, APT attackers are strategic, who can
follow different attack paths to achieve their goal. Therefore,
deception planning needs to have the capability to react to the
current adopted attack approach. Third, the planning should
be consistent, which means, if we lie at the reconnaissance
phase (e.g., filename f), we must lie believably until the end
of the exfiltration phase (e.g., honey content on that filename
f). Finally, the deception planning needs to minimize the cost
and system overhead while maximizing the achievement of
deception goals.

Consequently, a deception action also depends on the attack
action. Therefore, CHIMERA considers the strategic reasoning
between attacker and defender by integrating the uncertain
attack behavior into decision-making. To achieve that, we in-
troduced a new attack propagation graph, called the deception
graph (Fig. 3). The deception graph models the dependency
between the attacker’s action and the defender’s deception
by embedding two sets of state spaces named attack states
(states where attacker lands by executing a successful attack
action) and deception states (states where attacker lands if
the deception action is successful). However, a deception
graph for a particular APT group such as information stealer
can have many states and transitions because of different
attack techniques. Therefore, the defender needs to choose the
optimal deception actions regarding effectiveness, costs, and
overhead from an enormous set of choices to achieve his goal.
We formulate the problem of selecting the optimal deception
action using Partially Observable Markov Decision Process
(POMDP), that optimizes deception planning by considering
the dynamic attack and environment behaviors.

We implemented the embedded deception environment by
hooking system-level APIs for Windows Operating System.
First, we mapped 50 ATT&CK techniques with 191 distinct
Windows APIs. Then, we created hooks for all of these APIs
to perform the deception actions (e.g., generating a deceptive
response) when the adversary calls them [15]. We evaluated
CHIMERA in real-time with three different classes of APTs:
Information Stealer, Ransomware, and Remote Access Trojan

(RAT). We showed that CHIMERA has high efficiency in
deceiving malware in embedded systems and incurs a very
low system overhead. We also showed that the deception
plan generated by CHIMERA is better in achieving distinct
deception goals compared with state of the art such as Cuckoo
sandbox or Any.run online malware analysis tools.

II. THREAT MODEL AND SCOPE OF OUR WORK

CHIMERA aims to design a dynamic deception environ-
ment that triggers appropriate deception actions in real-time
to deceive the attacker’s activity in every phase of the kill
chain. For instance, CHIMERA can be used to set up a
production machine against information-stealing APT so that
defenders can analyze malware (e.g., discovering new TTPs)
that exfiltrates sensitive information. CHIMERA has two sig-
nificant aspects: 1) it can deceive malware already running
into the production system because of the hooking deception
techniques that work at the system API level. 2) APTs with
decoy/VM detection capabilities are ineffective as CHIMERA
provides embedded deception integrated with the real system.

It is important to note that the objective of CHIMERA is to
deceive malware in a particular way such that defenders can
achieve certain deception goals. Therefore, CHIMERA does
not safelist processes between benign or malicious but de-
ceives a given process based on the goal. For that, CHIMERA
provides optimal planning, a sequence of deception actions
based on adversary activity, and honey resources which can
be pre-created honey files, credentials, and more. A myriad
amount of research has been done on creating high-fidelity
honey resources (such as decoy files [16], [7], network traf-
fic [11], credentials [17], and systems [13], [10]). Therefore,
in this work, we do not describe honey resources’ creation;
but focused on when and how to use them efficiently.

III. CHIMERA SYSTEM DESIGN

The architecture of CHIMERA is illustrated in Fig. 2.
CHIMERA takes input as APT techniques from MITRE
ATT&CK, threat reports, and malware API traces from sand-
box (Cuckoo), and other analyzing tools like Hybrid Anal-
ysis, Any.run, and more. CHIMERA maps API call traces
to ATT&CK techniques which are later used to generate a
deception graph. The graph generator requires specification,
such as deception action state space that can defeat certain
attack actions. The deception graph is then used to generate
optimal deception action planning, where policy definition is
given as input, e.g., APT type (Information Stealer or Ran-
somware). CHIMERA has a deception agent in the production

MITRE ATT&CK
Technique Windows API Call Sequence Adversary Action Deception Action

Command and Scripting
Interpreter CreatePipe, CreateProcess, CreateFile, ReadFile, CloseHandle execute migrateInHE

Modify Registry RegCreateKeyA, RegSetKeyValueA, RegCloseKey addToRegistryRunKeys doNothing
Query Registry RegOpenKey, RegQueryValue, RegCloseKey queryRegistry honeyRegistry

Process Discovery 1) CreateToolhelp32Snapshot, Process32First, Process32Next
2) EnumProcesses tasklist honeySwList

File and Directory
Discovery

GetCurrentDirectory, CreateFile, ReadFile, CloseHandle,
FindFirstFile, FindNextFile, FindClose listDir redirectToHoneyDir

Clipboard Data OpenClipboard, GetClipboardData copy honeyCopy
Input Capture:
Keylogging

1) GetAsyncKeyState, GetKeyState, GetKeyboardState
2) SetWindowsHookEx, GetKeyState, GetKeyNameText copy honeyCopy

TABLE I: ATT&CK technique to Windows API mapping. Columns Adversary Action and Deception Action are names given
by us to represent corresponding technique. We use these action names to describe state transitions in the Deception Graph.

machine and monitors (IDS/API monitoring) to observe APT
actor’s activity. The sensor alert triggers the agent to choose
an optimal deception action to deceive the attacker’s next
action. The deception actions in CHIMERA are implemented
in system-level API hooking that fetches honey resources from
a Honey Factory to deceive the attacker. In the following
sections, we will describe each component in detail.

A. API Sequence to MITRE ATT&CK Technique Mapping

MITRE ATT&CK [14] illustrates the APT lifecycle regard-
ing tactic, technique, and procedure (TTP). A tactic (T) defines
attack objective/goal, whereas, techniques (T) are actions to
accomplish that goal. An attack technique describes the high-
level context explaining why it is executed, what adversary
gains from it, and how it is being performed. Such context
helps the defender to design necessary deception actions.
However, the APT actor interacts with the system using low-
level procedures (P), a sequence of system API calls, to
perform an attack technique. For instance, attack techniques
such as sensitive files and directories search can be done by
following shell commands: dir, tree, ls, find, locate,
etc.

The defender can collect system log events from an ongoing
APT campaign. However, to understand the attack context, it
is necessary to map the API call traces to high-level attack
techniques. Unfortunately, very few works have been done in
mapping API calls to ATT&CK techniques and they are very
limited [18], [19]. Therefore, we mapped the most essential 50
ATT&CK techniques frequently used in Information Stealer,
Ransomware, and RAT with 191 windows API. From 4,578
malware samples, we collected more than 37000 API traces
from Cuckoo sandbox [20] and their high-level behavior from
tools like Any.run [21], Hybrid-analysis [22] and Malware
Behavior Catalog (MBC) [18]. Finally, We go through the
MITRE ATT&CK techniques description and manually map
them with the API call sequences. Table I shows a subset of the
mapping. We published the complete mapping in GitHub [23]
to stimulate future research in this area.

B. Deception Graph

The deception graph in CHIMERA is a dependency graph
to model the adversary propagation in the system over time.
It is similar to attack graphs, where each node represents
a distinct adversary position, and each edge represents the

transition of attack propagation. A fragment of a deception
graph generated for Information Stealer is shown in Fig. 3.
Unlike the attack graph, the state transition in the deception
graph depends on the interaction between attack and deception
action. The attacker moves to a state by successfully executing
a specific sequence of actions or getting deceived due to
deception actions. For instance, in Fig. 3, the attacker has to
successfully act execute, setFileAttribute, and queryRegistry
actions to move from initial position Phishing to position
Credentials in Registry. This research considers a distinct
adversary position as a distinct state that comprises the overall
state space S in our deception action planning (see section IV).
The deception graph has two different types of states: (1)
honey state (grey in color) where the attacker reaches after
being deceived, and (2) real state (white in color) where
the attacker reaches after successful execution of an attack
technique. For example, in Fig. 3, the defender may redirect
the attacker’s traffic to a fake (decoy) C2 server, which takes
the attacker to a honey state named Deceived Exfiltration.
Whereas, by successfully exfiltrating data towards real C2
server, the attacker moves to real state Exfiltration Over C2.

The state transitions are represented as (ad1 /ad2/.../adn ,
av1 /av2 /.../avm), where adi is a deception action and avj is
an attack action separated by “,”. Each pair (adi , avj) repre-
sents a distinct transition. Multiple states inside a dotted box
represent a superstate. A transition to a superstate delegated
for its appropriate sub-state only. For instance, the (doNothing,
tasklist) transition means if the defender has no deception and
the adversary does a tasklist, it will jump to the real state
Software Discovery. Similarly, a (doNothing, queryRegistry)
will lead the attacker to Credentials in Registry state.

C. Honey Factory

CHIMERA presents all the deceived responses to the at-
tacker in an Honey Factory (HF). The HF consist of honey
files, credentials, passwords, decoy user accounts, email ac-
counts, web pages, software with honey patches, decoy process
lists, registry files, honey traffic, decoy servers, VMs, and
more. In CHIMERA, the honey resources in HF can be created
offline in remote machines. In our evaluation, we have three
remote VMs as part of HF. Therefore, the deception agent
can delegate specific attack API calls (e.g., download a sec-
ondary piece of malware code command) from the production

Fig. 3: Deception Graph mapping with MITRE ATT&CK techniques.

machine to one of the VMs through API hooking. However,
HF resources can be created online inside the production
machine. For instance, a decoy process list (honeySwList) can
be shown in response to the adversary’s tasklist command
through hooking the APIs related to the process discovery
technique (see Table I for deceiving process discovery API
lists).

IV. DECEPTION PLANNING

A. Deception Decision-making

To achieve the 4D goals cost-effectively, CHIMERA com-
putes a policy that recommends an optimal deception action
considering the current attack position and behavior.

Formulating Deception Decision-making: The optimal de-
ception strategy at the current time-sequence t depends on
the current adversary position. However, it is hard to infer
the exact sequence of adversary positions from the beginning
(at t = 0) due to dynamic environment and adaptive attack
behavior. Therefore, we formulate the decision-optimization
problem as Sequential Decision Process (SDP) [24]. The
environment is stochastic due to non-deterministic deception
consequences induced because of uncertain attack behavior.

Due to uncertain attack behavior, CHIMERA cannot cer-
tainly know the next attack action/move from a particular ad-
versary position. For example, from the Data Staged position
(in Fig. 3), the attacker may try to discover more credentials
or exfiltrate data. Without knowing the next attack action
certainly, there is a possibility that the deployed deception may
be irrelevant to defend the current attack action. For example,
let assume that CHIMERA decides to execute honeyCompress
(i.e., compressing garbage data instead of real discovered data)
to take the attacker to Honey Data Staged position in Fig.
3. Now, if the attacker exfiltrates data instead of Compress,
honeyCompress is irrelevant. However, against unknown attack
processes, CHIMERA can only probabilistically know the
next attack move. Besides, sophisticated attackers may adapt
action plans based on their observations about previous attack
consequences, making any static action planning ineffective.
CHIMERA formulates the SDP environment considering such
deception failure probability.

In the SDP, CHIMERA executes a deception action and
analyzes its consequences based on recent observations. Each
observation specifies a distinct set of APIs called by the
subjected process, based on which, CHIMERA also infers
the current adversary position. However, the monitored set
of APIs cannot be certainly mapped to a specific adversary
position due to constrained monitoring of limited APIs. Hence,
the environment is only partially observable with incomplete
and imperfect information. To address the partial observability,
CHIMERA formulates the decision-making problem as Par-
tially Observable Markov Decision Process (POMDP) [24].
POMDP is a sequential decision process of an agent who acts
and receives feedback from the environment synchronously,
through addressing uncertainties related to partial observabil-
ity. It is a tuple of < S,A, T,Ω, O,R, γ > where:
• S, A, and Ω are the state space, deception action space,

and observation space, respectively,
• T and O represent the state transition function and

observation function, respectively,
• R is the reward function,
• γ is the discount factor.

By solving the POMDP model, CHIMERA computes an
optimal policy that recommends the optimal deception action
for the current belief (i.e., probabilistic adversary position).
Among these parameters, state space S consists of MITRE
ATT&CK techniques represented as real state and honey state
in the deception graph (section III-B), and deception action
space, A, consists of unique deception actions considered for
this research. Discount factor γ ∈ (0, 1) regulates how far
in future CHIMERA looks to understand the current action
consequences into future, which is static in this paper.

B. State Transition Matrix

State transition matrix is a POMDP parameter that contains
transitional probabilities among states for all considered de-
ception actions. To clarify, the probability of transition from
current state (i.e., adversary position) s to next state s′ for
the deception action ad, for all possible s ∈ S, s′ ∈ S,
and ad ∈ A is denoted by p(s′|s, ad). While optimizing
policy, POMDP solution approaches consider this parameter

mainly to understand action consequence on the environment
[24]. CHIMERA determines p(s′|s, ad) using the following
equation:

p(s′|s, ad) =
∑
av∈V

p(s′|s, ad, av)× p(av|s) (1)

where, V is the attack space, and p(s′|s, ad, av) is the
system behavior that defines the probability of transition from
s to s′ when the attacker executes av in response to ad.
Notably, V consists of unique attack actions. Fig. 3 shows
some examples of attack actions by the second parameter
across edges.

In Eqn. 1, CHIMERA integrates the expected attack behav-
ior into its decision-model, in order to formulate the environ-
ment from defender’s perspective [25]. This reduces the prob-
lem from Partially Observable Stochastic Game (POSG) to
POMDP. Thus, CHIMERA addresses the limitation of POSG
in approximating a solution for two players with different
payoffs, which improves the scalability significantly.

To determine the system behavior, the agent uses the fol-
lowing equation:

p(s′|s, ad, av) =

{
1, if (s′, s, ad, av) is valid

0, Otherwise
(2)

In Eqn. 2, the first factor (s′, s, ad, av) is valid if, according
to deception graph, the attacker transits to s′ from s for
attack action av while defense action is ad. For example,
in Fig. 3, honeySwList deceives the adversary action tasklist;
hence, honeySwList is relevant to tasklist. The combination
(s′ =Honey Software Discovery, s =User Execution: Mali-
cious File) is relevant to (ad =honeySwList, av =tasklist),
because the adversary moves to Honey Software Discovery
from User Execution: Malicious File for executing tasklist
against honeySwList. Importantly, the attacker always remains
at the same state for doing nothing regardless of other factors.

In Eqn. 1, the second factor, p(av|s) specifies the probability
of executing action av at the current state s. This values come
from the deception graph.

C. Observation & Observation Matrix

An observation is a distinct set of API calls that CHIMERA
monitors to infer the current adversary position (state) in the
attack chain. However, it cannot certainly specify the under-
lying state due to partial observability. Here, the observation
space Ω is same as state space S. Each observation o ∈ Ω
is highly correlated with one state s ∈ S while having
low correlations with other states. For example, based on
recent observed set of API calls, there is high likelihood that
the attacker performed Software Discovery. However, due to
not monitoring all API calls, CHIMERA is not certain that
the attacker has not performed other actions. We compute
probabilities p(s|o) defining the likelihood of s for the recent
observation o, based on historical data of malware reports.

Composing Observation Matrix: Observation matrix O is
a POMDP parameter that specifies correlations among states

and observations. CHIMERA composes O to understand the
current state from recent observation o ∈ Ω. It contains
probabilities p(o|s) that specifies the probability of observing
o when the state is s, for all possible o ∈ Ω and state s ∈ S.

CHIMERA determines p(o|s) based on recent observation
o ∈ Ω and prior probabilities p(s|o), using the following
equation:

p(o|s) =
p(s|o)× p(o)∑
x∈Ω p(s|x)× p(x)

=
p(s|o)∑
x∈Ω p(s|x)

(3)

where, the probability, p(o), of observing o ∈ Ω is same for
all observations.

D. Reward

Alongside state transition matrix T , POMDP considers
reward to optimize the policy through understanding the ex-
pected payoffs of deception actions for all possible scenarios.
For all possible current state s ∈ S, next state s′ ∈ S, and
deception action ad ∈ A, CHIMERA quantifies R(s′, s, ad)
that defines the payoff of ad for the state transition from s
to s′. Higher reward due to ad motivates policy to execute
ad. CHIMERA formulates R(s′, s, ad) using the following
equation:

R(s′, s, ad) = −q(s′) +
∑
i∈G

wi × Zdi − Cd (4)

where, q(s′) is the risk of data exfiltration if the attacker
reaches at state s′, and G is the 4D deception goal consisting of
Diversion, Distortion, Depletion, and Discovery. Additionally,
Zdi defines whether ad achieve the goal i ∈ G or not, and Cd
is the installment cost of ad.

In Eqn. 4, q(s′) at a state s′ ∈ S depends on two factors:
(1) ρ(s′) that defines the probability of reaching to Exfiltration
Over C2 from s′, and (2) L that is the loss (in dollars) due
to data exfiltration. Notabaly, Exfiltration Over C2 is actually
the attack goal state sg . The first factor, ρ(s′), depends on
available paths to reach sg from s′, which are obtained from
the deception graph at Fig. 3 (without considering the defense
action). For example, from Software Discovery, the attacker
can reach to sg by the path with actions: (copy, HTTP) or
by the path with actions: (tasklist, copy, HTTP). The second
factor, L, is user-given and same for all possible scenarios.

There are multiple available paths to reach sg from s, and
the attacker reaches sg if he successfully executes all actions
of any of available paths. This intuition is formulated using
the following equation:

ρ(s) = 1−
∏
lj∈L

(1− ρj(s)) (5)

where, L are available paths to reach to sg from s, and
ρj(s) is the likelihood of reaching sg through the path lj . ρj(s)
depends on probabilities of executing attack actions following
the sequence in lj . Understandably, ρj(s) gets lower with more
required actions to reach sg , that makes the reward higher. To
clarify, from a honey state, he has to repeat previous actions

or execute more actions; thus, it reduces the risk of exfiltration
and provides incentive to CHIMERA.

The second term in Eqn. 4 provides incentives to ad for
achieving specific deception goals using wi. Notably, each
deception action offers diversified benefits regarding 4D goals.
For instance, redirectToHoneyDir provides diversion and dis-
covery but not distortion and depletion, whereas, Honey Data
Staged helps to discover attack behavior. Therefore, by wi, the
user can emphasize on actions that are more inclined to his
objectives or mission. The last term, Cd, defines deployment
cost of ad due to required configurations, operations, and
others. This paper considers wi and Cd as user-inputs.

E. Belief

Belief bt is the probabilistic distribution across all states
s ∈ S, that probabilistically specifies the current state at
time-sequence t through addressing the imperfect and in-
complete environment observability. For instance, bt(Software
Discovery) defines the likelihood of Software Discovery as the
current state. To address uncertainties related to observations,
CHIMERA determines bt considering the recent observation
o, probable state transitions (state transition matrix), and
correlations among states and recent observation (observation
matrix). Using the traditional belief update approach [24],
CHIMERA formulates current belief bt using the following
equation:

bt(s) =
p(o|s)

∑
s′′∈S p(s|s′′, a)bt−1(s′′)∑

w∈S p(o|w)
∑
s′′∈S p(w|s′′, a)bt−1(s′′)

(6)

where, p(o|s) is the probability of observing o at state s,
and bt−1(s′′) is the belief about previous state s′′.

F. POMDP Policy Generation

CHIMERA computes the optimal deception policy by solv-
ing the composed POMDP model. It recommends the optimal
deception action a∗d for current belief bt. To address uncertain-
ties associated with the environment, the composed POMDP
model considers not only the probable attack behavior (by state
transition matrix), but also correlations of observations (API
traces) with probable attack positions (by observation matrix).
CHIMERA applies Heuristic Search Value Iteration (HSVI) to
solve the POMDP model, which approximates the policy with
a bounded (user-given) regret rate [26]. Regret rate defines the
precision of HSVI, and the approximated policy moves closer
to the optimal policy for lowering its value.

HSVI takes an initial belief as the initial probabilistic attack
position, in order to prune irrelevant belief space unreachable
from initial attack position. The optimal deception action
recommended by the computed policy maximizes the accumu-
lated reward for the current belief bt, considering not only the
current attack position but also the probable attack propagation
in future. The following equation formulates the intuition:

V π(bt) = E

[∞∑
t=0

γtR(s′, s, at)|bt, π

]
π∗ = arg max

π
V π(bt)

where, V π(bt) is the expected reward value considering future
decision-horizon (defined by γ ∈ (0, 1)), π∗ is the computed
policy maximizing V π(bt), and R(s′, s, at) is the expected
reward for transition from s to s′ by defense at at time t.

V. IMPLEMENTATION

We solve POMDP model by ZMDP (POMDP solver) [26].
We use python to create the deception graph from MITRE
ATT&CK APT reports. We use API-to-MITRE (section III-A)
mapping to include techniques in deception graphs from mal-
ware traces. For implementing the embedded Honey Factory
(HF), we use system-level API hooking. To scale the decep-
tion actions with HF resources, we classified all deception
strategies into four categories; 1) Fake Failure: this strategy
always denies any API calls indicating a failure status, e.g.,
malware wants to compress a file but will get denied stating
compression mechanism not found. 2) Fake Success: always
return a successful response without performing the task. For
instance, Ransomware wants to encrypt a file; it will return
encryption successfully without any encryption. 3) Honey
Execute: this strategy delegates the API calls to remote VM
that executes the command, and the VM’s response goes back
to the attacker. 4) Native Allow: always allow any API calls.

Embedded Deception-API Hooking: We implemented
the idea of deception strategy using EasyHook, a free, open-
source hooking library for 32-bit and 64-bit Windows pro-
cesses released under the MIT license. EasyHook provides
a generic template for APIs hooking. In addition, EasyHook
ensures thread safety by using a thread deadlock barrier.
When the deception agent in CHIMERA decides to deceive
the attacker’s next movement (technique), the agent chooses
a deception strategy. Let us assume the attack technique is
File and Directory Discovery, and the defender’s strategy
is Honey Execute, which delegates every relevant API call
to remote HF. From the API-to-MITRE mapping, the agent
identifies the malware will invoke the following sequence of
API: GetCurrentDirectory - send - recv. After identifying the
relevant APIs, the agent uses Easyhook to inject a Dynamic
Link Library (DLL) into the malware process including the
strategy Honey Execute. According to our example, when the
malware calls GetCurrentDirectory API, the current working
directory was supposed to be copied into the parameter
lpBuffer. However, the hook forwards the call to HF, and
HF reports back a deceptive directory list, which gets copied
back into the lpBuffer. Eventually, the malware receives the
deceptive directory listing instead of the real one.

VI. EVALUATION

We evaluated CHIMERA with 4,578 real malware samples
from three different families: Information Stealer, Ransome-
ware, and Remote Acces Trojan (RAT). Our key evaluation

Family InfoStealer Ransomware RAT

Sub
Family

L
ok

iB
ot

Po
ny

K
ha

le
si

K
eg

ot
ip

R
am

ni
t

G
ro

zl
ex

O
cc

am
y

Fa
re

It

Fl
ox

if

E
m

ot
et

R
ac

co
n

G
en

er
ic

.P
W

S

Tr
oj

an
.P

W
S

W
an

na
C

ry

R
yu

k

C
er

be
r

G
an

dC
ra

b

G
h0

st

Pu
py

Q
ua

sa
r

Samples 673 294 207 119 385 77 65 42 106 486 54 552 336 256 161 139 159 53 64 35

TABLE II: Datasets. 4,578 malware samples in total: 3,396 Information Stealers, 1,030 Ransomware, and 152 RATs.

Family Malware
Family Discovery Cuckoo Any.run CHIMERA

InfoStealer

Fareit T 8 7 8
P 39 126 149

LokiBot T 7 2 11
P 21 173 243

Pony T 8 4 17
P 231 191 582

Racoon T 7 8 16
P 45 23 51

Ransomware
Ryuk T 6 3 6

P 27 32 102

GandCrab T 8 10 10
P 192 109 245

RAT

Gh0st T 2 2 6
P 4 57 69

VanilaRat T 1 0 12
P 1 0 12

Quasar T 5 2 13
P 14 4 16

TABLE III: Techniques (T) and procedures (P) discovered by
CHIMERA compared to Cuckoo sandbox and Any.run.

criteria were how efficiently CHIMERA deceives malware to
obtain distinct deception goals in real-time. Further, we evalu-
ate the quality of deception (in terms of discovery, depletion,
and diversion), optimal policy generation, and overhead due
to deception action deployments. Finally, we run CHIMERA
in a production machine and discover new TTPs compared
to existing APT analysis tools, such as Cuckoo [20] and
Any.run [21]. We published our findings in GitHub [23] to
incite future works in cyber deception.

A. Dataset

Table II summarizes the datasets we used in our evaluation.
We collected a total of 4,578 malware samples from VirusTotal
and MalShare. We choose 3,396 samples of Information
Stealer from 13 families, 1,030 samples of Ransomware from
4 families, and 152 samples of RAT from 3 different families.
We collected more than 37,000 API traces from Cuckoo
sandbox [20] and DogeTron [13] from these malware samples.
Furthermore, we collected the lifecycle of 27 Information
stealing APTs, 17 Ransowmare APTs, and 19 RAT APTs from
MITRE ATT&CK [14].

B. Experiment setup

We used 80% of our malware sample data randomly to build
the model for deception action planning, and the rest is used
for testing. We collected the API traces of the training malware
samples from Cuckoo and DodgeTron. Using these traces and
API-to-MITRE mapping (Table I), we built three different
deception graphs for Information Stealer, Ransomware, and
RAT. Existing works such as [27], [19] give us insight into
calculating the likelihood of adversary transition from a given
state to the next state. Further, we quantified the deception
action cost and effectiveness as low, medium, and high.
We then set up CHIMERA into a production machine with

vulnerable software. We created a remote Honey Factory with
three VMs. We used honey resources such as honey files,
credentials, registry keys, passwords, decoy user accounts,
process list, honey traffics, etc., in the factory VMs.

C. Deception Efficiency
We randomly chose 916 malware samples from our dataset

to assess CHIMERA’s efficiency in deceiving attackers. The
results are illustrated in Fig. 4. We successfully deceived
879 malware samples (95.93%) that run to completion (e.g.,
exfiltration). Out of them, 781 malware samples took our baits
and exfiltrated the honey resources, which we observe by in-
specting the plain Command and Control (C2) communication.
However, 98 malware samples sent encrypted traffic to C2,
which we redirected to the decoy server because we could not
verify whether they took honey resources or not. We failed to
run 8 malware samples (0.89%) because of either not having
the C2 server or the malware was unable to comply with
system requirements. For instance, we could not run VanillaS-
tub.exe (MD5: 185526401b0a3a083c797cac3598051a) RAT
client for not having the master. The remaining malware
samples did not run to completion due to expecting specific
C2 commands/responses encrypted with specific keys.

D. Quality of Deception
We quantify deception quality by discovering new TTPs,

unique API calls, distinct API call traces, and malware de-
pletion to delay the attack propagation. We maintain the key
criteria of successful deception: running malware to comple-
tion to reach its goal. We compare our outcomes with existing
popular APT analyzers such as Cuckoo sandbox and Any.run.

TTP Discovery: Table III shows the performance
of CHIMERA in discovering technique (T) and
procedure (P). Clearly, CHIMERA discovers more attack
techniques and procedures than Cuckoo and Any.run. For
instance, when we run the Lokibot information stealer
sample (MD5: 5ce9945d6999c9636c1f49e270382d6b)
in CHIMERA, we observed it searches for files
“C:\Users\admin\AppData\Roaming\Mozilla\Firefox\Prof-
iles\qldyz51w.default\pkcs11.txt” by calling the following
APIs: CreateFile, ReadFile, and CloseHandle. This procedure
resembles the “File and Directory Discovery” technique.
Later, we discover another technique “Application Layer
Protocol” due to calling the following APIs: InternetOpen,
InternetConnect, HttpOpenRequest, and HttpSendRequest.
Cuckoo or Any.run cannot detect the later technique and
corresponding procedures due to not having a C2 server
setup. With decoy C2 server, CHIMERA discovers more
techniques and procedures. For the same reason, CHIMERA
outperforms the other tools in discovering RATs.

95.93%

3.18% 0.89%

Successfully
Deceived
Failed to Complete

Failed to Run

Fig. 4: CHIMERA deception efficiency.

10%
21%

14%

11%

19%
23%

6%

10%
16%

17%

12%

0

10

20

30

40

50

60

70

80

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

N
um

be
r

of
 D

ist
in

ct
 A

tta
ck

 A
PI

 C
al

l D
isc

ov
er

ed

Malware Families

Cuckoo Sandbox Chimera

Fig. 5: Unique attack API discovered.

5% 8%

15%
12%

22%
25%

4%
10% 7%

8%

17%

0

500

1000

1500

2000

2500

3000

3500

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

To
ta

l N
um

be
r o

f A
PI

 C
al

l D
isc

ov
er

ed

Malware Families

Cuckoo Sandbox Chimera

Fig. 6: Total trace API coverage.

Fig. 7: Optimal policy over
cost effectiveness.

Fig. 8: Optimal policy over
data exfiltration probability.

Fig. 9: Depletion time against
BasicRAT.

Fig. 10: Depletion time against
PupyRAT.

states # 36
dcep. action #57 states # 27

dcep. action #48
states # 21

dcep. action #63

0

100

200

300

400

500

600

700

InfoStealer Ransomware RAT

Ch
im

er
a

Po
lic

y
Ge

ne
ra

tio
n

Ti
m

e
(s

ec
on

ds
)

Fig. 11: Policy generation over-
head for different APT. Fig. 12: Policy generation over-

head for different malware.

37 37

26

43

37

29

46 47

33

39
36

0

5

10

15

20

25

30

35

40

45

50

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

D
yn

am
ic

 C
on

fig
ua

ra
tio

n
D

el
ay

 (s
ec

on
d)

Malware Family

Fig. 13: Deception delay.

states # 36
dcep. action #57

states # 27
dcep. action #48 states # 21

dcep. action #63

0
2
4
6
8

10
12
14
16

InfoStealer Ransomware RAT

De
ce

pt
io

n
Ac

tio
n

Se
le

ct
io

n
Ti

m
e

(m
illi

se
co

nd
s)

Fig. 14: Optimal deception ac-
tion selection time (real-time).

Unique API Call and Trace Discovery: Fig. 5 shows the
number of unique APIs discovered by CHIMERA compared
to Cuckoo. On average, CHIMERA discovered 14.45% more
unique API calls than Cuckoo. In total, CHIMERA found
78 distinct API calls that are not even monitored by Cuckoo
at all. Fig. 6 shows distinct API trace coverage comparison.
CHIMERA is ahead of 12.09% average trace coverage than
Cuckoo. We consider a trace is distinct by taking the longest
common subsequence from both CHIMERA and Cuckoo.

E. Optimal Policy

To measure how optimal CHIMERA’s policy is, we created
static planning using the same attack and defense action spaces
over the deception graph and compare it with CHIMERA
generated policy. We used Satisfiability Modulo Theories
(SMT) to create the static planning. Fig. 7 shows that, while
running different attack scenarios of an Information Stealer,
CHIMERA always best performed choosing the most cost-
effective actions, meaning CHIMERA chooses low cost ac-
tions with high efficiency in deceiving the attacker. Similarly,
Fig. 8 shows that, the SMT planning mostly fails to prevent
data exfiltration, whereas in CHIMERA planning, data exfil-
tration probability is nearly zero.

We engaged (to deplete the attacker to delay its progression)
with two different malware, BasicRat that we called naive
RAT, as it does not employ defense evasion techniques, and
PupyRat, which can check the system to discover container
environments (sandbox/VM). Fig. 9 shows that the SMT plan-

ning is capable of engaging with the attacker for 10 minutes
on average before the BasicRat client quits because of not
receiving the appropriate (deceptive) response. On the other
hand, PupyRat detects the deception environment because of
static planning in the minute mark (Fig. 10). In both cases,
CHIMERA deception planning was able to engage with the
attacker for more than an hour.

F. Policy generation overhead

We measured the overhead of CHIMERA in two aspects,
1) deception policy generation overhead and 2) delay due to
deception action orchestration and deployment.

Offline Policy Generation Delay: From our datasets, we
created three deception graphs for Information Stealer, Ran-
somware, and RAT, each having 36, 27 and 21 states respec-
tively. Fig. 11 shows that the maximum policy generation
overhead is 600 seconds for Information Stealer, having 37
states. The results also shows that the number of actions
in deception graphs has little influence on the overhead. In
Fig. 12, we individually created a deception policy for each
sub-family and found that the average policy creation delay is
around 250 seconds.

Online Action Selection Delay: CHIMERA deception
agent selects an optimal deception action in run-time. Fig. 14
shows that the maximum delay to chose a deception action is
15 milliseconds for Information Stealer.

Dynamic Deception Delay: We calculated the dynamic
deception delay by running a malware sample to comple-

tion into a machine without CHIMERA. Then we deployed
CHIMERA into that machine and run the same malware.
We calculated the time difference as system overhead due to
deception action orchestration and deployment. Fig. 13 shows
that the maximum orchestration delay is 47 seconds, which is
insignificant compared to an APT campaign running time.

VII. RELATED WORK

The state of the art of cyber deception focuses on designing
virtual machines (VM) and sandboxes as a decoy [1], [2], [3].
These decoys have fake resources regarding files, software,
user accounts, passwords, credentials, web pages, services,
processes, servers, email accounts, and more [16], [8], [17],
[7]. Alerts are sent to defenders if any activity is observed on
those honey traps. However, skilled adversaries found unique
ways to uncover such decoy VMs [4], [5], [6]. Usually,
adversaries realize that isolated decoy machines do not initiate
traffic, often responding late because they create complicated
deception responses, making them easy to identify [28].

Research has been done to create network-level deception
by malicious packet redirection [6] and falsified probe re-
sponses [11] to defend reconnaissance and lateral movement.
System and data level deception such as honey password
creation, decoy file generation, vulnerable software patch-
ing, etc., protects the system from internal attacks [1], [9].
Many research has been done to measure the efficacy of
cyber deception [12]. Static planning and deception framework
composing various deception actions is used to deceive APT
actors [13], [29], [10]. To make the attack-defense battle
dynamic, game-theoretic and probabilistic deception model
has been introduced [30].

VIII. CONCLUSION

In this paper, we introduced a framework named CHIMERA
that provides an optimal deception planning to deceive APT
attacks and achieve the 4D deception goals: diversion, deple-
tion, distortion, and discovery in real-time. We use POMDP
to obtain the optimal deception action planning. We devel-
oped a deception environment using Windows API hooking,
where malicious API calls can be redirected to honey VM or
responded with crafted honey content. Because of API level
deception, we can use CHIMERA embedding with the produc-
tion machine. We evaluated CHIMERA with 4,578 malware
samples from three different families: Information Stealer,
Ransomware, and RAT. We found CHIMERA deceives those
malware samples with high efficiency (95.93%) and low
system overhead (47s). The limitation of CHIMERA is that
the deception is done through system level API hooking. If
the malware can bypass API hooking or detect it, CHIMERA
cannot deceive them.

REFERENCES

[1] X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer
security: A research perspective,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 1–36, 2018.

[2] L. Zhang and V. L. Thing, “Three decades of deception techniques in
active cyber defense-retrospect and outlook,” Computers & Security, p.
102288, 2021.

[3] C. Wang and Z. Lu, “Cyber deception: Overview and the road ahead,”
IEEE Security & Privacy, vol. 16, no. 2, pp. 80–85, 2018.

[4] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprint-
ing low-and medium-interaction honeypots at internet scale,” in 12th
{USENIX} Workshop on Offensive Technologies ({WOOT} 18), 2018.

[5] J. Rrushi, “Honeypot evader: Activity-guided propagation versus
counter-evasion via decoy os activity,” in Proceedings of the 14th IEEE
International Conference on Malicious and Unwanted Software, 2019.

[6] L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits
with degreaser,” in Proceedings of the 30th Annual Computer Security
Applications Conference, 2014, pp. 156–165.

[7] P. Karuna, H. Purohit, S. Jajodia, R. Ganesan, and O. Uzuner, “Fake
document generation for cyber deception by manipulating text compre-
hensibility,” IEEE Systems Journal, 2020.

[8] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From
patches to honey-patches: Lightweight attacker misdirection, deception,
and disinformation,” in Proceedings of the 2014 ACM SIGSAC confer-
ence on computer and communications security, 2014, pp. 942–953.

[9] A. Juels and T. Ristenpart, “Honey encryption: Security beyond the
brute-force bound,” in Annual international conference on the theory
and applications of cryptographic techniques. Springer, 2014.

[10] Q. Duan, E. Al-Shaer, M. Islam, and H. Jafarian, “Conceal: A strategy
composition for resilient cyber deception-framework, metrics and de-
ployment,” in 2018 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2018, pp. 1–9.

[11] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese, E. Serra, G. I. Simari,
and V. Subrahmanian, “A probabilistic logic of cyber deception,” IEEE
Transactions on Information Forensics and Security, 2017.

[12] K. J. Ferguson-Walter, M. M. Major, C. K. Johnson, and D. H.
Muhleman, “Examining the efficacy of decoy-based and psychological
cyber deception,” in 30th {USENIX} Security Symposium ({USENIX}
Security 21), 2021.

[13] M. S. I. Sajid, J. Wei, M. R. Alam, E. Aghaei, and E. Al-Shaer,
“Dodgetron: Towards autonomous cyber deception using dynamic hybrid
analysis of malware,” in 2020 IEEE CNS, 2020, pp. 1–9.

[14] Mitre att&ck. [Online]. Available: https://attack.mitre.org/
[15] M. S. I. Sajid, J. Wei, B. Abdeen, E. Al-Shaer, M. M. Islam, W. Diong,

and L. Khan, “Soda: A system for cyber deception orchestration and
automation,” in Annual Computer Security Applications Conference,
2021.

[16] J. Lee, J. Choi, G. Lee, S.-W. Shim, and T. Kim, “Phantomfs: file-
based deception technology for thwarting malicious users,” IEEE Access,
vol. 8, pp. 32 203–32 214, 2020.

[17] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking
detectable,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 145–160.

[18] Malware behavior catalog. [Online]. Available: https://github.com/
MBCProject

[19] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 1137–1152.

[20] Cuckoo sandbox. [Online]. Available: https://cuckoosandbox.org/
[21] Any.run. [Online]. Available: https://any.run/
[22] Hybrid analysis. [Online]. Available: https://www.hybrid-analysis.com/
[23] M. M. Islam. Chimera results. [Online]. Available: https://github.com/

rakeb/Chimera
[24] D. Braziunas, “Pomdp solution methods,” University of Toronto, 2003.
[25] R. Tipireddy, S. Chatterjee, P. Paulson, M. Oster, and M. Halappanavar,

“Agent-centric approach for cybersecurity decision-support with partial
observability,” in 2017 IEEE HST, 2017, pp. 1–6.

[26] T. Smith, “Zmdp software for pomdp and mdp planning,” 2013.
[27] R. Al-Shaer, J. M. Spring, and E. Christou, “Learning the associations

of mitre att & ck adversarial techniques,” in 2020 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2020, pp. 1–9.

[28] E. Al-Shaer, J. Wei, W. Kevin, and C. Wang, Autonomous Cyber
Deception. Springer, 2019.

[29] M. M. Islam and E. Al-Shaer, “Active deception framework: an exten-
sible development environment for adaptive cyber deception,” in 2020
IEEE Secure Development (SecDev). IEEE, 2020, pp. 41–48.

[30] E. Miehling, M. Rasouli, and D. Teneketzis, “A pomdp approach to
the dynamic defense of large-scale cyber networks,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 10, pp. 2490–2505,
2018.

