Automatic Machine Learning

Jianping Fan
Department of Computer Science
UNC-Charlotte

Course Website:
http://webpages.uncc.edu/jfan/itcs5152.html
End-to-end Machine Learning Pipeline

Transform features \rightarrow Identify model \rightarrow Tune parameters
Raw Data → Data Cleaning → Feature Preprocessing → Feature Selection → Model Selection → Parameter Optimization → Model Validation

Automated by TPOT
Google Cloud AutoML

Dataset

AutoML

Generate predictions with a REST API

Train

Deploy

Serve
In the definition of Automated Machine Learning, AutoML includes:

(a) automated feature engineering

(b) automated model selection and hyperparameter tuning

(c) automated neural network architecture selection

(d) automated deployment
The future of AutoML in the next 3–5 years:

(a) AutoML will also handle most of the data cleaning process

(b) AutoML will vastly improve deep learning

(c) AutoML will scaled to large data sets

(d) AutoML will become human competitive

(e) AutoML will transform the practice of data science as we know it

(f) AutoML is only a small part of a greater meta-learning movement
The advantages of AutoML

Default parameters are almost always bad

AutoML handles this for you!

The advantages of AutoML

There is no “best” ML algorithm for all problems

AutoML handles this for you!

The advantages of AutoML

AutoML is a huge time-saver

WHAT DATA SCIENTISTS SPEND THE MOST TIME DOING

60% Cleaning and organising data

AutoML handles *some of this for you!*

4% Refining algorithms

5% Other

9% Mining data for patterns

19% Collecting data sets

Image source: visit.crowdflower.com/data-science-report.html
Early AutoML focused on only parameter tuning

Early AutoML focused on only parameter tuning

... and maybe (limited) model selection

We mostly used grid search and random search.

Nowadays, we wouldn’t really call this AutoML.
Modern AutoML optimizes the entire ML workflow.

Machine Learning analyses can be complex

- Entire Data Set
 - Polynomial Features: Pipeline operators modify the features
 - Recursive Feature Elimination
 - Combine Features
 - Random Forest Classifier
 - PCA
 - Modified data set flows through the pipeline operators

Multiple copies of the data set can enter the pipeline for analysis.
Larger search spaces require smarter optimization

- Meta-learning
- Bayesian optimization
- Genetic programming
- Multi-armed bandit

Image source: thuijskens.github.io/2016/12/29/bayesian-optimisation/
AutoML in the near future

• AutoML will also handle most of the data cleaning process
 – Unstructured data → tabular data ready for analysis
 – Capture & automate human approaches to data cleaning

• AutoML will vastly improve Deep Learning
 – Automated DNN architecture design
 – Automated preprocessing of data prior to modeling

• AutoML will scale to large datasets
 – Most AutoML tools are very slow on “Big Data”
 – Spark, Dask, TensorFlow, etc. will help bring AutoML to scale
 – H2O AutoML and TPOT on Dask already shows promise for scalability

• AutoML will become human-competitive
 – Already human-competitive on several Kaggle challenges (top 10% of entries)
 – Already human-competitive in DNN architecture design (Google AutoML)
AutoML in the future

• **AutoML will transform the practice of data science as we know it**
 – “Data Science Assistant” → Junior Data Scientist level
 – Less focus on choosing the right ML workflow
 – More focus on posing the right questions, collecting & curating the right data, and “thinking like a data scientist”

• **AutoML is only a small part of a greater meta-learning movement**
 – Computer programming is focused on automating rote tasks
 – Machine learning is focused on automating the automation of rote tasks
 – Meta-learning is focused on *automating the automation of automation*
 • i.e., enabling the machine to learn *how* to learn in the best way possible
Learning to Learn
Learning is a never-ending process

Tasks come and go, but learning is forever
Learn more effectively: less trial-and-error, less data
Learning to learn

Inductive bias: all assumptions added to the training data to learn effectively. If prior tasks are *similar*, we can **transfer** prior knowledge to new tasks (if not it may actually harm learning).

![Diagram](image_url)
Meta-learning

Collect meta-data about learning episodes and learn from them

Meta-learner learns a (base-)learning algorithm, *end-to-end*

```
Task 1
  ↓
 Learners
  ↓
 Models
  ↓
performance

Task 2
  ↓
 Learners
  ↓
 Models
  ↓
performance

Task 3
  ↓
 Learners
  ↓
 Models
  ↓
performance

New Task
  ↓
 meta-learner
  ↓
 base-learner
  ↓
 Models
  ↓
performance
```

meta-data

optimize
Three approaches for increasingly similar tasks

1. Transfer prior knowledge about what generally works well
2. Reason about model performance across tasks
3. Start from models trained earlier on similar tasks
1. Learning from prior evaluations

Configurations: settings that uniquely define the model
(algorithm, pipeline, neural architecture, hyper-parameters, …)

![Diagram showing the process of learning from prior evaluations.](image-url)
Top-K recommendation

- Build a *global* (multi-objective) *ranking*, recommend the top-K
- Requires fixed selection of candidate configurations (*portfolio*)
- Can be used as a warm start for optimization techniques

![Diagram]

- Tasks
 - Learning
 - Models
 - Performance
 - Global ranking (task independent):
 1. \(\lambda_a\)
 2. \(\lambda_b\)
 3. \(\lambda_c\)
 4. \(\lambda_d\)
 5. \(\lambda_e\)
 6. \(\ldots\)
 - New Task
 - Meta-learner
 - Models
 - Performance
 - Warm start
Warm-starting with plugin estimators

- What if prior configurations are not optimal?
- Per task, fit a differentiable plugin estimator on all evaluated configurations
- Do gradient descent to find optimized configurations, recommend those
Configuration space design

- **Functional ANOVA**: select hyperparameters that cause variance in the evaluations
- **Tunability**: improvement from tuning a hyperparameter vs. using a good default
- **Search space pruning**: exclude regions yielding bad performance on similar tasks

Diagram:

- Tasks \(\rightarrow\) Learning \(\rightarrow\) Models \(\rightarrow\) performance
- \(\lambda_i\)
- \(P_{i,j}\)
- New Task \(\rightarrow\) meta-learner \(\rightarrow\) Models
- Performance
Active testing

- **Task are similar** if observed relative performance of configurations is similar
- Tournament-style selection, warm-start with overall best configurations λ_{best}
- Next candidate λ_c: the one that beats current λ_{best} on similar tasks (from portfolio)

\[RL_{a,b,j} = P_{a,j} - P_{b,j} \]

Relative landmark on $\lambda_a, \lambda_b, \text{task } t_j$:
Update:
\[Sim(t_j,t_{new}) = Corr([RL_{a,b,j}],[RL_{a,b,new}]) \]
Select $\lambda_c >_{RL} \lambda_{best}$ on similar tasks
Bayesian optimization (refresh)

- Learns how to learn within a single task (short-term memory)
- Surrogate model: *probabilistic* regression model of configuration performance
- *Can we transfer what we learned to new tasks (long term memory)***?
Surrogate model transfer

- If task j is *similar* to the new task, its surrogate model S_j will do well
- Sum up all S_j predictions, weighted by task similarity (relative landmarks)
- Build combined Gaussian process, weighted by current performance on new task

![Diagram of surrogate model transfer](image)
Warm-started multi-task learning

- Bayesian linear regression (BLR) surrogate model on every task
- Learn a suitable basis expansion $\phi_z(\lambda)$, joint representation for all tasks
- Scales linearly in # observations, transfers info on configuration space
Multi-task Bayesian optimization

- **Multi-task Gaussian processes**: train surrogate model on t tasks simultaneously\(^1\)
 - If tasks are similar: transfers useful info
 - Not very scalable

- **Bayesian Neural Networks** as surrogate model\(^2\)
 - Multi-task, more scalable

- **Stacking** Gaussian Process regressors (Google Vizier)\(^3\)
 - Sequential tasks, each similar to the previous one
 - Transfers a prior based on residuals of previous GP
Other techniques

- Transfer learning with multi-armed bandits\(^1\)
 - View every task as an arm, learn to `pull` observations from the most similar tasks
 - Reward: accuracy of configurations recommended based on these observations
- Transfer learning curves\(^2,^3\)
 - Learn a partial learning curve on a new task, find best matching earlier curves
 - Predict the most promising configurations based on earlier curves

![Graph showing accuracy vs. number of cases](image)
2. Reason about model performance across tasks

Meta-features: measurable properties of the tasks

(number of instances and features, class imbalance, feature skewness,...)

Task 1
...
Task N

→ **meta-features** m_j

→ **configurations** λ_i

→ **performances** P_{ij}

→ **similar m_j?**

→ **New Task**

→ **meta-learner**

→ **Models**

→ **performance**
Meta-features

- **Hand-crafted (interpretable) meta-features**
 - **Number of** instances, features, classes, missing values, outliers, ...
 - **Statistical**: skewness, kurtosis, correlation, covariance, sparsity, variance, ...
 - **Information-theoretic**: class entropy, mutual information, noise-signal ratio, ...
 - **Model-based**: properties of simple models trained on the task
 - **Landmarkers**: performance of fast algorithms trained on the task
 - Domain specific task properties

- **Learning a joint task representation**
 - Deep metric learning: learn a representation h^{mf} using a ground truth distance
 - With Siamese Network:
 - Similar task, similar representation
Warm-starting from similar tasks

- Find k most similar tasks, warm-start search with best θ_i
 - Genetic hyperparameter search 1
 - Auto-sklearn: Bayesian optimization (SMAC) 2
 - Scales well to high-dimensional configuration spaces

\[\begin{align*}
\text{Tasks} & \rightarrow m_j \\
\text{Learning} & \rightarrow \lambda_i \\
\text{Models} & \rightarrow \text{performance} \\
& \rightarrow P_{i,j}
\end{align*}\]

\[\text{New Task} \rightarrow \text{meta-learner} \rightarrow \lambda_{1..k} \rightarrow \text{Models} \rightarrow \text{performance}\]

\[\text{Genetic optimization}\]

\[\text{Bayesian optimization}\]
Warm-starting from similar tasks

- Collaborative filtering: configurations λ_i are `rated' by tasks t_j
 - Probabilistic matrix factorization
 - Learns a latent representation for tasks and configurations
 - Returns probabilistic predictions for Bayesian optimization
 - Use meta-features to warm-start on new task
Global surrogate models

- Train a task-independent surrogate model with meta-features in inputs
 - SCOT: Predict ranking of λ_i with surrogate ranking model + m_j. \(^1\)
 - Predict P_{ij} with multilayer Perceptron surrogates + m_j. \(^2\)
 - Build joint GP surrogate model on most similar ($\|m_i - m_j\|_2$) tasks. \(^3\)
- Scalability is often an issue
Meta-models

- *Learn* direct mapping between meta-features and P_{ij}
 - Zero-shot meta-models: predict best λ_i given meta-features 1

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{\text{best}}$

- Ranking models: return ranking $\lambda_{1..k}$ 2

 $m_j \rightarrow \text{meta-learner} \rightarrow \lambda_{1..k}$

- Predict which algorithms / configurations to consider / tune 3

 $m_j \rightarrow \text{meta-learner} \rightarrow \Lambda$

- Predict performance / runtime for given θ_i and task 4

 $m_j, \lambda_i \rightarrow \text{meta-learner} \rightarrow P_{ij}$

- Can be integrated in larger AutoML systems: warm start, guide search,...
Learning Pipelines

- **Compositionality**: the learning process can be broken down into smaller tasks
 - Easier to learn, more transferable, more robust

- Pipelines are one way of doing this, but how to control the search space?
 - Select a fixed set of possible pipelines. Often works well (less overfitting)\(^1\)
 - Impose a fixed structure on the pipeline\(^2\)

- (Hierarchical) Task Planning\(^3\)
 - Break down into smaller tasks

- Meta-learning:
 - Mostly warm-starting
Evolving pipelines

- Start from simple pipelines
- *Evolve* more complex ones if needed
- Reuse pipelines that do specific things
- Mechanisms:
 - Cross-over: reuse partial pipelines
 - Mutation: change structure, tuning
- Approaches:
 - TPOT: Tree-based pipelines\(^1\)
 - GAMA: asynchronous evolution\(^2\)
 - RECIPE: grammar-based\(^3\)
- Meta-learning:
 - Largely unexplored
 - Warm-starting, meta-models
Learning to learn through self-play

- Build pipelines by selecting among actions
 - insert, delete, replace pipeline parts
- Neural network (LSTM) receives task meta-features, pipelines and evaluations
 - Predict pipeline performance and action probabilities
- Monte Carlo Tree Search builds pipelines based on probabilities
 - Runs multiple simulations to search for a better pipeline

![Diagram showing the process of learning through self-play](image)
3. Learning from trained models

Models trained on similar tasks
(model parameters, features,...)

![Diagram showing learning from trained models](image)

- Task 1
 - Learning
 - Models
 - Performance
- Task N
 - Learning
 - Models
 - Performance
- New Task
 - Meta-learner
 - Models
 - Performance
Transfer Learning

- Select source tasks, transfer trained models to similar target task
- Use as starting point for tuning, or freeze certain aspects (e.g. structure)
 - Bayesian networks: start structure search from prior model
 - Reinforcement learning: start policy search from prior policy

![Diagram of Transfer Learning](image)
Transfer features, initializations

- For neural networks, both structure and weights can be transferred

- Features and initializations learned from:
 - Large image datasets (e.g. ImageNet)
 - Large text corpora (e.g. Wikipedia)
 - Fails if tasks are not similar enough

Feature extraction:
- remove last layers, use output as features
 - if task is quite different, remove more layers

End-to-end tuning:
- train from initialized weights

Fine-tuning:
- unfreeze last layers, tune on new task
Learning to learn by gradient descent

- Our brains *probably* don’t do backprop, replace it with:
 - Simple *parametric* (bio-inspired) rule to update weights \(^1\)
 - Single-layer neural network to learn weight updates \(^2\)
- Learn parameters across tasks, by gradient descent (meta-gradient)
Learning to learn gradient descent by gradient descent

- Replace backprop with a recurrent neural net (LSTM), but not so scalable
- Use a coordinatewise LSTM for scalability/flexibility (cfr. ADAM, RMSprop)
 - Optimizee: receives weight update g_t from optimizer
 - Optimizer: receives gradient estimate ∇_t from optimizee
 - Learns how to do gradient descent across tasks
Few-shot learning

- Learn how to learn from few examples (given similar tasks)
 - Meta-learner must learn how to train a base-learner based on prior experience
 - Parameterize base-learner model and learn the parameters θ_i

$$Cost(\theta_i) = \frac{1}{|T_{test}|} \sum_{t \in T_{test}} loss(\theta_i, t)$$
Few-shot learning: approaches

- Existing algorithm as meta-learner:
 - LSTM + gradient descent \(\text{(Ravi and Larochelle 2017)} \)
 - Learn \(\theta_{init} + \) gradient descent \(\text{(Finn et al. 2017)} \)
 - kNN-like: Memory + similarity \(\text{(Vinyals et al. 2016)} \)
 - Learn embedding + classifier \(\text{(Snell et al. 2017)} \)
 - ...

- Black-box meta-learner
 - Neural Turing machine (with memory) \(\text{(Santoro et al. 2016)} \)
 - Neural attentive learner \(\text{(Mishra et al. 2018)} \)
 - ...

Mathematical formulation:

\[
Cost(\theta_i) = \frac{1}{|T_{test}|} \sum_{t \in T_{test}} loss(\theta_i, t)
\]
LSTM meta-learner + gradient descent

- Gradient descent update θ_t is similar to LSTM cell state update c_t
 \[\theta_t = \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} \mathcal{L}_t \]
 \[c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \]
- Hence, training a meta-learner LSTM yields an update rule for training M
 - Start from initial θ_0, train model on first batch, get gradient and loss update
 - Predict θ_{t+1}, continue to $t=T$, get cost, backpropagate to learn LSTM weights, optimal θ_0

Train Test

$\text{Cost}(\theta_T) = \frac{1}{|T_{\text{test}}|} \sum_{t \in T_{\text{test}}} \text{loss}(\theta_T, t)$
Model-agnostic meta-learning

- Quickly learn new skills by learning a model initialization that generalizes better to similar tasks
 - Current initialization θ
 - On K examples/task, evaluate $\nabla_{\theta} L_{T_i}(f_\theta)$
 - Update weights for $\theta_1, \theta_2, \theta_3$
 - Update θ to minimize sum of per-task losses
 - Repeat
 $$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta_1})$$

- More resilient to overfitting
- Generalizes better than LSTM approaches
- **Universality**: no theoretical downsides in terms of expressivity when compared to alternative meta-learning models.
- REPTILE: do SGD for k steps in one task, only then update initialization weights3
1-shot learning with Matching networks

- Don’t learn model parameters, use non-parameters model (like kNN)
- Choose an embedding network \(f \) and \(g \) (possibly equal)
- Choose an attention kernel \(a(\hat{x}, x_i) \), e.g. softmax over cosine distance
- Train complete network in minibatches with few examples per task

\[
\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i \\
\theta = \{\text{VGG, Inception, ...}\}
\]
Prototypical networks

- Train a “prototype extractor” network
- Map examples to p-dimensional embedding so examples of a given class are close together
- Calculate a prototype (mean vector) for every class
- Map test instances to the same embedding, use softmax over distance to prototype
- Using more classes during meta-training works better!
Learning to reinforcement learning

- Humans often learn to play new games much faster than RL techniques do.
- Reinforcement learning is very suited for learning-to-learn:
 - Build a learner, then use performance as that learner as a reward.
- Learning to reinforcement learn \(^1,^2\):
 - Use RNN-based deep RL to train a recurrent network on many tasks.
 - Learns to implement a `fast’ RL agent, encoded in its weights.

\(^1\) Duan et al. 2017
\(^2\) Wang et al. 2017
\(^3\) Duan et al. 2017

- Also works for few-shot learning \(^3\):
 - Condition on observation + upcoming demonstration.
 - You don’t know what someone is trying to teach you, but you prepare for the lesson.
Learning to learn more tasks

- Active learning
 - Deep network (learns representation) + policy network
 - Receives state and reward, says which points to query next
- Density estimation
 - Learn distribution over small set of images, can generate new ones
 - Uses a MAML-based few-shot learner
- Matrix factorization
 - Deep learning architecture that makes recommendations
 - Meta-learner learns how to adjust biases for each user (task)
 - Replace hand-crafted algorithms by learned ones.
- Look at problems through a meta-learning lens!
Meta-data sharing building a shared memory [Vanschoren et al. 2014]

- OK, but how do I get large amounts of meta-data for meta-learning?
 - **OpenML.org**
 - Thousands of uniform datasets
 - 100+ meta-features
 - Millions of evaluated runs
 - Same splits, 30+ metrics
 - Traces, models (opt)
 - **APIs in Python, R, Java,…**
 - Publish your own runs
 - Never ending learning
 - Benchmarks

```
import openml as oml
from sklearn import tree

task = oml.tasks.get_task(14951)
clf = tree.ExtraTreeClassifier()
flow = oml.flows.sklearn_to_flow(clf)
run = oml.runs.run_flow_on_task(task, flow)
myrun = run.publish()
```

run locally, share globally

Open positions!
Scientific programmer
Teaching PhD
Towards human-like learning to learn

- Learning-to-learn gives humans a significant advantage
 - Learning how to learn any task empowers us far beyond knowing how to learn specific tasks.
 - It is a universal aspect of life, and how it evolves
- Very exciting field with many unexplored possibilities
 - Many aspects not understood (e.g. task similarity), need more experiments.
- Challenge:
 - Build learners that never stop learning, that learn from each other
 - Build a global memory for learning systems to learn from
 - Let them explore by themselves, active learning