12 Basic schemes

such an approach suffers from two disadvantages.

First, in spite of the fact that under some assumptions a one-to-one
correspondence exists between the strategies and the set of action rules
given for each initial point ¢ (ignoring the requirement of measurability
in the initial point which is required in the strict definition of strategy)
to use only the definition of strategies is not convenient because the
formulation of strategy may be considerably more complicated than
that of the action rule corresponding to it and conversely.

Consider, for example, the following simple and stationary, i.e.
independent of time, strategy in the two-armed bandit problem: fix
some number &, 0 < £ < 1 and at time n use the control al if the
a posteriori probability &(n) 1= &(n) of hypothesis Hy is less than or
equal to ¢, and use a® if £(n) > &. The corresponding action rules
(for each initial point) as a function of the results of observations are
much more complicated and, moreover, this function depends on the
initial point as argument. Now, in the same problem, consider the
following action rule: the control a' is used initially and afterwards
the control is changed after each appearance of a 0. In this case, the
strategy corresponding to the action rule described (which is the same
for all initial points ¢) is the more complicated.

Secondly, the use of the definition of action rule together with the
usual definition of strategy has the advantage that the resulting prob-
lem may be presented in a special form which we will describe in the

next section.

1.5 Finite Bayesian problem

In light of the equation Pf = ‘Jo¥ £1-P.-ﬁ, the given problem may be
presented as a particular case of an abstract optimization problem as

follows:
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where ¢ = (¢1,...,¢n) € SV, d € Ais some admissible control set and

I¢ is a functional defined on A. We will call this problem simply the -

finite Bayesian problem. Designate the value of the infimum (1.3) as
®(¢), and the control d at which the infimum is reached, if such exists,
as d*(¢). Then it is well known (see, for example, De Groot 1970) that
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the function ®(¢) is convex and continuous inside the simplex SV as
an infimum of functions linear with respect to £.

The representation of the problem of the basic scheme in the form
(1.3), where the réle of A is played by the whole set of action rules,
allows us, for example, also to obtain the continuous differentiability

of the value function from the continuity of the functions If*m as

functions of ¢ (see §7.3).

Next we will describe an analogue of the basic scheme presented
above in continuous time and the methods used for it, delaying a
discussion of the results obtained in discrete time until later.

1.6 Transition to the continuous time case

It is known that in many situations the transition from a problem
in discrete time to a problem in continuous time yields deeper and
more powerful results. The basic idea of such a transition in our case
consists in the replacement of Bernoulli discrete time sequences with
a fixed probability of success A observed using a fixed control with a
continuous time Poisson process having as intensily the same value
A. The intensity A defines the probability of a realized 1 (success) as
Adt on a small interval ({,1 + d¢). The realization of a 1 does not
depend on the behaviour of the process up to time ¢ (independence of
process events on nonoverlapping time intervals). A Poisson process
is a (unit) jump process in continuous time possessing the stationarity
property and with independent increments. The expected number of
realizations of a 1 in a fixed elapsed time v is the same for the Bernoulli
case in discrete time and the Poisson case in continuous time, namely
Av.

At first glance, it seems natural to construct a sequence of prob-
lems in discrete time depending on a time unit n~! and taking limits
as n — oo to yield the problem in continuous time as follows. Divide
each unit interval of observation in discrete time into n intervals
[i/n,(i + 1)/n) and, allowing on each subinterval discrete time choice
of controls, replace the probability of realizing a 1 with /\f over a unit
interval by the appropriate X! /n on each subinterval, so that the aver-
age number of successes observed in unit time for a fized control does
not change. However, the following complication arises.
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We return to the symmetric 2 x 2 case and trace which sequences
of controls we must apply to obtain an optimal strategy with n suf-
ficiently large and initial point € := (1/2) + €, where ¢ is some small
positive number. According to the optimal strategy described in the
introduction, at the initial time it is necessary to apply the control
a?. Since A!/n is close to 0, then with probability close to 1 we will
observe a 0 on the interval [0,A!/n) and updating the a posterior:
probability by formula (1.1) we will get a value £ < 1/2, so that at the
next step we must use the control a'. Again observing a 0, we will on
updating obtain the initial point £ and again use a?, and so on. If the
number of observations is of order n and the probability of realizing
a 1is M/n, then with positive probability bounded away from 0 we
will observe a sequence consisting of only 0s, and therefore will use
the sequence of controls a',a?,a',a?,... . It is not clear to what this
sequence of alternating controls will converge as n — co.

Randomization of the discrete time controls is not a possible so-
lution to this problem. With randomized controls, the probability
distributions on the set of basic controls serve as new controls. In our
case we are given a finite number of controls a',...,a™ and there-
fore random controls are given by points « := (a',...,a™) from S™.
In control problems with a criterion of expected profit, randomiza-
tion, as is well known (see, for example, De Groot 1970), does not
increase the profit. This, of course, does not contradict the fact that
to prove many results random controls are widely used because they
allow the possibility of making the problem in some sense tractable.
In the above example, the random controls o' := 1/2, o® := 1/2,
o := (a',a?) € §?, might be tried; however, then the controls a' and
a® will again be interchanged extremely irregularly.

However, randomization is not the only possible way to increase
the class of admissible controls, where the controls a',...,a™ are basic
and correspond to the set S§™ of vertices of the simplex S™, while
controls from the increased class correspond to arbitrary points of the
simplex. We consider another closely related method of increasing the
control set for which the continuous time problem may be obtained as
a “natural limit” of the prelimit problems in discrete time.

As a matter of definition consider that the choice of a vector a € §™
(now this vector a is called the control) leads to the observation of
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an m-dimensional random vector with independent coordinates taking
values 0 or 1 with the probability of a 1 in the j*! place equal to aj/\f
under hypothesis H;. (Recall that the rows of the hypothesis matrix
{M} correspond to the hypotheses Hy,..., Hy). All other conditions
hold as for the basic scheme. We call this the model with sharable
resources, interpreting o’ as a fraction of a single resource allocated
to the 7'® device.

In the case of the basic scheme in discrete time the situation using
randomization is the same as without it; at each moment only one
device is operative, so that this formulation might be termed that
with nonshareble resources.

In the model with sharable resources, the choice a € §™, o := e,
as in the basic scheme, leads to the observation of a Bernoulli random
value on the j*" device, while for the rest of the devices observations are
absent. However, the choice of an arbitrary control in the model with
sharable resources and in the basic scheme (with randomization) the
observations will be different, but the expected number of realizations
of 1 under the #*" hypothesis will be the same, i.e. 2 ajAf.

Since in both formulations the observations may be considered to
coincide for the application of the pure controls a',...,a™, and in
the basic scheme treated as a maximization problem randomization
does not increase the profit function, then the optimal profit in the
formulation with sharable resources is not less than that of the basic
scheme.

In §3.6 a precise definition of the formulation with resource sharing
is given and it is proved (Theorem 3.4) that optimal profits in both
schemes coincide. We emphasize that the necessity of considering the
resource sharing formulation is related to the fact that control prob-
lems in continuous time (we will preserve the term “basic scheme” for
these) may be obtained by taking discrete time limits in the resource
sharing model rather than in the basic scheme.

The question of connection of problems in continuous and discrete
time is also discussed at the beginning of Chapter 4, but its systematic
consideration is beyond the scope of this book.
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1.7 Basic scheme in continuous time

A heuristic formulation of the problem in continuous time follows.
Similarly to the discrete time case, the parameters of the problem are
the hypothesis matriz A := {M}, i = 1,...,N, j = 1,...,m and the
vector of a posteriori probabilities of the hypotheses £ := {&;,...,én}.
The value A corresponds to the intensity of realized ls on the j'"
device when the i*" hypothesis holds and the 7' device is used exclu-
sively. If in a small time interval [t,{ + dt) the fraction of the resource
used for control allocated to the j'" device is equal to a?, then the
corresponding intensity of realized ls in that interval equals oM. On
each small interval the control consists in a choice of values o/, a7 > 0,
Yo’ =1 and, similarly to the discrete time case, this choice depends a
priori on all previous observations and controls. Since current controls
are functions of past observations, action rules may be considered as
functions @ taking values in §™ and depending at time ¢ on the history
of the m-dimensional random observation process up to time {.

Such functions may be described as follows. At the initial moment
a choice is made of a deterministic function ag(s) = (ag(s),. .., ad'(s)),
measurable with respect to s, 0 < s < v, which takes values in S™
and corresponds to control up to the moment of the first jump of the
process (i.e. a realization of a 1). If at the random time 7, a jump
occurs with respect to any coordinate, then depending on the value of
71 and the index j; of this coordinate, a new function a;(s|m,j1) =
(al(s),...,am(s)) is chosen, and so on. We will mainly consider the
problem of maximization of the expected number of jumps in a fixed
time and, similarly to discrete time, the corresponding value function
will be designated by V,(£).

As in discrete time, the optimal control may be implemented by
observing only the vector £(s) representing the a posteriori distribu-
tion of the hypothesis at each moment. The rigorous derivation of the
corresponding stochastic equations given in §4.2 is based on sufficiently
delicate results of the theory of stochastic processes that we give here
only a nonrigorous but transparent derivation of these equations.

Designate by z;(s|a) := z;(s) the probability that no jump occurs
up to time s under the condition that the i*" hypothesis holds and
the control a(s) := (a'(s),...,a™(s)) is used. Since the probabhility
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of the first jump with respect to the j*" coordinate of the observation
process occurring on the small time interval [s, s+ ds) does not depend
on the other coordinates and equals a’(s)A] ds, then z;(s) satisfies the
formula

z(s) = exp{—= 3 M f o (u) du}. (1.4)
=1 7

Let z(s|a) := z(s) be the unconditional probability that up to moment

s no jump occurs. Obviously,

N
z(s) = Y &izi(s). (1.5)
i=1
Denote by p/(¢)ds the conditional probability of a jump with respect
to the'j“‘ coordinate in the small time interval [s, s + ds), if £(s) := ¢
and a’(s) := 1. Obviously,

N

P& =Y &

i=1

(1.6)

Let p;(a)ds be the conditional probability of a jump in the small
time interval [s,s + ds) given that the i'" hypothesis holds and the
control a(s) := « is used. Obviously,

pi(e) = 3ol (1.7)
i=1

Denote by p(é,a)ds the unconditional probability of a jump with

respect to at least one coordinate of the vector process in the small

time interval [s,s +ds), if {(s) := ¢ and the control a(s) := « is used.

Clearly,

N

pe0) =3 6mla) = (O =33 el (1)

17=1

M=

i=1 i

11

By the Bayesian formula for the e posteriori distribution of hy-
potheses £(s) = (&1(s),...,¢én(s)) under the condition that no jump
has occurred up to time s,

&i(s) = &zi(s)/2(s),

i=1,...,N. (1.9)
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From (1.5) and (1.4) using (1.9) we have

#(s) = —2z(s)p(é(s), @)-

Differentiating (1.9) and (1.4) and using the last relation we have
that the differential equations describing the evolution of £(s) on the
time interval up to the first jump of the process are given by

&(s) = &s)p(E(s), @) — pi(a)] = fi(&(s), @),

This equation can be rewritten in the following vector form

i=1,...,N. (1.10)

= aA* (£ ¢ — diag §),

where * denotes transpose and diag(¢) is the diagonal matrix formed
from the entries of €.

Obviously, the same equation holds on the time interval between
any two successive jumps.

Let ¢ denote the value of the vector of a posteriori probabilities
of hypotheses given that a jump occurred with respect to the 7t co
ordinate and previous to the jump this value was given by £. Again
applying Bayes’ formula to the probability of a jump on a small time
interval it is not difficult to see that

(19¢) gAf/ng e iy wepdV (1.11)

The original formulation of the basic scheme in discrete time was
reduced to a control problem for a Markov chain whose states are
the a posteriori probabilities of hypotheses. Similarly, it may be
shown that the basic scheme in continuous time can be reduced as fol-
lows. At the initial moment choose a control which is a deterministic
vector-valued function a;(s) taking values in §™. The system is de-
scribed by a point (s,£) in the (N +1)-dimensional state space “time—
a posteriori probabilities,” 0 < s < v, { € S™, whose motion from the
initial point (0,¢) is determined by the differential equation (1.10).
At some random moment Ty, the trajectory is transformed by a jump
from the state £(7) to the state I7(é(r;)) if a jump of type j occurs
(j = 1,...,m). In the original formulation this corresponds to the
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moment of realization of a 1 with respect to the 7'* coordinate of the
observation process. The probability density that the transition oc-
curs to the state ['V¢(s) on the small time interval [s,s + ds) equals
a{(s)pj(f(s)). After the first jump the control a,(s) is chosen, which in
general depends upon when and in what state the first jump occurred,
and so on. The sequence of such successive controls {a;(s), az(s),...}
is called a strategy. It is required to find the strategy maximizing the
ezpected number of jumps over the horizon v. The optimal value of
this problem will also be denoted by V().

We mention that, just as in discrete time (see §1.4), it is sometimes
more convenient to make a change of variables from ¢ to 7 (see formula
(1.2)) where, for example, defining 7; := In(§;/én), the differential
equation (1.10) takes the simple form :

m

m= =3 (A= Ay)ed, (1.12)
i=1 :
and formula (1.11) takes the form
Dip=n+y, v =0h.d), A =h/N),  (113)

i.e. the value of the jump in the new process depends exclusively on
the jump coordinate j of the old.

Two different approaches exist to solve the problems described
above for the basic continuous time scheme. The first, traditional,
approach is connected with the application of the (Bellman) optimal-
ity equation, i.e. with the equation satisfied by the value function given
by the supremum of the criterion functional (in our case the expected
number of jumps) maximized with respect to all admissible strate-
gies. The second approach is related to the (Pontryagin) mazimum
principle (see §1.9 and Chapter 6).

With both approaches it is sometimes convenient to embed the
initial formulation, that is, to consider the problem not as a single
problem but as a set of problems with a fized time of final observation
(horizon) v, but with initial time ¢ running through the different val-
ues, { < v. (Formally, it is possible to stay in the framework of a single
process by considering the conditional values of the criterion functional
at given intermediate points, see Gikhman & Skorohod (1977).)
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To solve problems of the basic scheme in continuous time the op-
timality equation may be rewritten in two forms: namely, in terms of
the values of the value function at successive jumps of the observation
process or on a small time interval. In the second case, the optimality
equation is called local.

1.8 Local optimality equation

We give a heuristic derivation of the local optimality equation for the
problem of maximization of the expected number of jumps (successes).
Let the final observation time v be fixed (v < o). By V(¢,€) denote
the value of the value function for problems on the time interval [t,v)
with a priori distribution ¢, so that V(t,&) := V,_,(¢). We shall con-
sider a small interval [f, 1+ dt) and write the relation connecting V (¢, )
and V(t + dt,£& + d¢) and the control on this interval. Without loss of
generality we may take the control a(s) to be constant on the interval,
since, similarly to the situation for deterministic optimal control prob-
lems in continuous time (see Boltyanski 1969), it is sufficient to replace
the measurable functions afs) by piecewise continuous functions. Let
Ve(t,€) designate the expected value of the number of jumps for the
strategy defined by using the control a on the interval [¢,¢ 4 dt) and
using the strategy optimal for the initial point (¢ + dt,£(t + dt)) on
the remaining interval [t 4 dt,v). With probability p’(¢)a’dt + o(dt)
the system will be in the state (¢ + dt,I9¢ + o(dt)), 7 = 1,...,m,
for t + dt and with probability 1 — ¥, a?p/(€)dt + o(dt) in the state

(t + dt, € + d*¢), where d*¢ is defined in terms of evolution according |

o (1.10). Therefore, we have that up to terms of o(dt)

— 3" adpi()dt[L + V(¢ + dt, T + ofdt))

i=1

VL]
L E)dt) V(t+dt, € +d*¢).  (1.14)
According to the Bellman optimality principle we must have that

V(t,€) = sup V(L €). (1.15)

aESm
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Assuming that the value function V(¢,€) is continuously differentiable,
using equalities V(¢ + dt,19¢ + o(dt)) = V(t,19¢) + 0(dt) and
V(t+dt,€ +du€) = V(L,€)+ (2V(L O+ TN, 12V (5 OI(€ a)dt +
o(dt), neglecting second order terms, dividing by dt and taking limits
as dt — 0, yields

a m
—EV( = sup {g )V (L, l“’f)

agsm

N

t2l3

S V() - (V (t,e)ﬁl)p(e,a)}

1= sup iajTj(t,ﬁ), (1.16)

aESsm =

where f;(¢,a) is defined in (1.10).

The approach to the optimality equation is based on a theorem
which states that if there exists a continuously differentiable solu-
tion V*(t,£) of equation (1.16) satisfying the boundary condition
V*(v,é) = 0 for v < oo, or its analogue for v = oo, and a func-
tion a*(t,£) making (1.16) an identity and such that equation (1.10)
has a unique solution with a*(t,£(s)) replacing «, then a* defines
the optimal strategy and V*(t,£) coincides with the value function
Vi(t,6)

The function a*(t,£) is called an optimal synthesis and it gives the
optimal strategy as a function of time and state as in the usual theory
of optimal control.

This theorem will be proved in §4.5 and follows a proof scheme
similar to analogous theorems for other types of controlled random
processes (for example, for controlled processes of diffusion type (see
Krylov 1977).

Note that for such a verification theorem it is not necessary to
give a proof that the value function is sufficiently smooth and satisfies
equation (1.16) (i.e. a proof of the necessity of the local optimality
equation which is here sufficient).
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1.9 Reduction to the Pontryagin problem

The second approach to the solution of basic scheme problems in con-
tinuous time involves reduction to optimal control problems in which
the motion of the system (object) is described by the differential equa-
tion

@ = f({,2,a), {117

and it is necessary to maximize (minimize) the integral functional

= [ 1%s,a(s), a(s))ds (1.18)

over a class of piecewise continuous (or measurable) functions «f-)
with values in some control set. The method, called the Pontryagin
mazimum principle, used to solve such problems (and some more gen-
eral problems) is well known and is related to the introduction of the
Hamiltonian and conjugate variables. The specific characteristics of
basic scheme problems reduced to problems of type (1.17),(1.18) yield
a sequence of interesting properties.

To obtain the system dynamics for the basic scheme, the differential
equation (1.10) is augmented by the differential equation for z(s) (see
the equation following (1.9)). Thus we get a system of differential
equations for the state variables as

i(s) = —2(s)p(€(s), ) (1.19)

Ei(s) = fi(&(s),a) :iajff(ﬁ(s)), i=1,...,N. (1.20)

The solution of these equations with initial (at time t) state
2(t) = 1, £&(t) = ¢ and with control a := (a(s),s > t) will be de-
noted by z(s|t,&,a), é(s|t, €, a).

As well as the problem of maximization of the expected number
of jumps over a fixed time interval, we may also consider the problem
of maximization of the probability of the event that at least k jumps
occur in the time interval to v. We term this problem Bj. Let us first
consider the relations between the problems By, & = 1,2,.... The
value of the criterion functional in the problem By for the strategy

B = (e (s]t, &), az(s|m,€(m),t,€),...) and the initial point (¢,£) will
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be designated by Ff(t,{) and that of the value function by F(t,€) :=
supﬁ (t £¢). The probability of the first jump after time ¢ occurring
in the srnall time interval [s,s 4+ ds) and being a jump of the j'* type

is equal to _ A
z(s]t, &, er)ei(s)p’ (€(slt, €, an))ds. (1.21)
By the complete probability formula we have
F(4,¢)
= [ (st &) - () el €, 0n)) L

j=1

DIg(slt, €, e1))ds
(1.22)
Here ai(s) 1= ai(s|t,&) and B := (aa(s|m, (1), ¢, €),@a(+),...), e

the continuation of the strategy 3 after the first jump. According to
the Bellman optimality principle

Fi(2,€)
_sup/ slt,¢, @) a"(s]p (€(s1,€, @) s (s, T7E (st €, @) ds
(1.23)
Here a := a(s|t,£) is an arbitrary piecewise continuous (measurable)

vector function with values in S™ defined on the interval (¢,v).

If the function Fj_1(s,€) is known and continuously differentiable
with respect to its arguments, then taking into account also the smooth-
ness of the transformation I'7¢, we obtain a nonautonomous optimal
control problem with fixed time, fixed left-hand end point and free
right-hand end point, state variables (z,£), 0 < z < 1, £ € §V satis-
fying the system (1.19),(1.20) and with integral functional (1.22). For
simplicity we will also call this problem B,.

Since Fy(s,&) := 1, the problem B; may in principle be solved and
the values of the function Fi(s,£) found. If this function is continu-
ously differentiable, then problem B, can thereby be solved, and so
on.

From the optimal controls a; (s|t,€), ay(s|t,¢) obtained from the
solution of problem B,, from problem B,, and so on, the optimal
strategy in the problem By, # := (a:(3|t,§), azfl(slrl,f(rl)),....
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o) (8|7k_1, €(Tk_1))), is constructed. Supposing the function Fj_,(¢,¢)
to be continuously differentiable, we may write the Hemillonian
Hy. of the appropriate Pontryagin maximum principle in the form

ﬁk ZZHk

m N ; .
=z {Z o [pP(€) Fr_1 (T7€) + Z:lﬁ‘:ff(f) - qﬁp’({)]}

=2y I Li(E, ¢, ). (1.24)

i=1

Here 3; := 1,5,-/2, i =1,.., N, where 9;, ¢ are the conjugate variables
for the problem B.

Let the optimal control be given by some synthesis (¢, €) and let
£(t) be the corresponding trajectories. Then there exist the functions
P(t,€), ¢(t,€), Li(t,€) such that (1) := (¢, £(2)), ¢(t) == ¢(t, (1)),
Li(&(2), ¥(t), ¥(t)) := Li(t,€(t)). Under suitable assumptions it can
be proven that ¢(t,€) = Fi(t,€), ¥:i(t,&) = OF(t,€)/0¢;, and under
these assumptions Hy, in (1.24) coincides with the right-hand side of
an equation for the value function similar to (1.16).

A specific feature of the basic scheme problem is that the deriva-
tive of the function L] along optimal trajectories at a point (t,€) is
expressed in terms of the value of the functions L}_,, r = 1,...,m,
and the optimal synthesis for the problem B,_; at the points (¢,T7¢).

If the problem B, _; has been solved, then the functions L}_; can
be constructed and the relations presented above used to construct the
functions L;’; as necessary conditions. In particular, such a method is
used in §6.5 to solve the By problems for the symmetric case.

Moreover, the identity mentioned above between the Hamiltonian
and the right-hand side of the local optimality equations makes it
possible to use the formula for L;i in the construction of the optimal
synthesis for the Bellman equation.

The solution is more complicated for the basic formulation problem
requiring the maximization of the expected number of jumps. Formu-
lated in an analogous way to the above, the Pontryagin maximum
principle leads to maximization of an integral functional of the follow-
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ing type:

Pl.6) = Stip /!uz(s|t,f,a) Zaj(s)pj(f(s|t,f,a))

i=1

X (1+ F(s, T¢(slt, €, a)))ds, (1.25)

where an unknown function appears in the left- and right-hand sides
of the equation.

One possible way of solving this problem is the following. Sup-
pose that the value function F(t,£€) is known and has the required
smoothness. Then the maximum principle can be written in terms of
the corresponding Hamiltonian H =z 3 a’L7. For the derivative
of the function L’ we can obtain a formula analogous to the formula
for the derivative of L;’;. Using this formula as a necessary condition,
a synthesis can be constructed and its optimality proved.

1.10 Linear c-ontrol problems with Poisson jumps

Above we have indicated that basic scheme problems can be converted
to particular cases of the optimal control of a system whose evolution
consists of deterministic motion defined by differential equations linear
in the controls with m types of trajectory jumps occurring at random
times whose distributions also depend on the controls. We can apply
the Pontryagin maximum principle approach described above to prob-
lems whose differential equations have a more general character than
(1.20), but with all other specifications remaining the same.

At each moment the control is represented by an m-dimensional
vector a(s) = (al(s),...,a™(s)) with values in S™. As before, a’(s)
is interpreted as the “intensity” of use of the j't device relative to
the m others at time s. The state of the system is described by the
vector z = (21,...,2n5). Now the coordinates z; do not correspond
to a posteriori probabilities and thus, in considering this problem, we
diverge from the Bayesian approach. The motion of the system in the
intervals between jumps is described by differential equations linear
with respect to a, viz

& = Y al(s)al(z). (1.26)




