Title Page

Seasonal observations Optimal Stopping of MC State Elimination Algorithm Projections of Markov Models (MCs) Reality and Open Problems

Optimal Stopping of Seasonal Observations and Calculation of Related Fundamental Matrices

Isaac M. Sonin

Department of Mathematics and Statistics University of North Carolina at Charlotte, USA http://...type in Google Isaac Sonin

The Fifth Bachelier Colloquium on Mathematical Finance and Stochastic Calculus January 16-23, 2011, Metabief, France

Reality vs Theory ! Resistance levels. Do they exist ?

...despite the upturn in investor sentiment, the Dow met with staunch *resistance* near the 11,700 level yesterday...

...though *support* could materialize just below 1,090 at the SPX's 50-day moving average...

Support for the Dow has materialized in the 11,550 region, with additional *support* from its 10-week trendline hovering just below the average. *Resistance*, meanwhile, should materialize near 10,750 if the bulls remain asleep...

Resistance levels 2

"Model": Suppose that all believe that

- 1) support level d and resistance level D do exist;
- 2) The stock market is a MC with three states:
- a, bearish = random walk with a negative drift,
- *n*, neutral = random walk,
- b, bullish = random walk with a positive drift.

What is your optimal strategy if stock market is in a, n, b?

Obvious: buy in b, sell in a, wait in n, but only inside of (d, D).

Then, we will have self-fulfilling prophecy - markets will follow the model !

Resistance levels 3

Suppose that you do not believe but other believe.

What is your optimal strategy if stock market is in a, n, b?

Your strategy will be the same !

Then, again - markets will follow the model !

Outline

- Motivation done
- Seasonal Observations
- Optimal Stopping (OS) of Markov Chains (MCs)
- State Elimination Algorithm (SEA)
- Projections of MCs
- Key transformation
- Open Problems

Seasonal observations

The simplest problem of optimal stopping is tossing a die.

The following problem of OS of MC was dubbed previously by an author as OS of "Seasonal" Observations.

A DM (decision maker, player) observes a MC $(Z_n), Z_n = (U_n, Y_n)$ with two components, where the first one is an "underlying" finite MC (U_n) with *m* states and given transition matrix *U*, and the other component is one of *m* independent sequences of i.i.d. r.v. $(Y_n(k))$ with known distr-s $F = \{f(\cdot|k)\}$.

There are m dice and which of them is tossed at a given moment is specified by a position of a MC (U_n) .

The goal of a player is to maximize the discounted expected reward over all possible stopping times. The crucial point is that $P = U \times F$. Hidden MC if a DM observes only (Y_n) .

Theorem (1, Presman, Sonin 2010, Theory of Prob. and Appl.)

(a) There are threshold values $d_*(1), ..., d_*(m)$, such that the optimal stopping set $S_* = \bigcup_j S_*(j), S_*(j) = \{x : g(i,j) \ge d_*(j)\}, j \in B = \{1, ..., m\},$ (b) $d_* = (d_*(s), s \in B)$ satisfies the equation

 $d_*(s) = \sum_{k \in B} l_*(s,k) \sum_{j \in D_*(k)} g(k,j) f(j|k),$

where the matrix $L_* = \{l_*(s, k), s, k \in B\}$ is defined by the equality

 $L_* = [I - UF_d(D_*)]^{-1}U,$

c) only a finite number of steps k_* is necessary to obtain an optimal stopping set...

 $N = [I - Q]^{-1}$ is a fundamental matrix for a subst-c matrix Q.

Optimal Stopping (OS) of Markov Chain (MC)

T. Ferguson: "Most problems of optimal stopping without some form of Markovian structure are essentially untractable...".

OS Model $M = (X, P, c, g, \beta)$:

- X finite (countable) state space,
- $P = \{p(x, y)\}$, stochastic (transition) matrix
- c(x) one step cost function,
- g(x) terminal reward function,
- β discount factor, $0 \le \beta \le 1$
- (Z_n) MC from a family of MCs defined by a Markov Model M = (X, P)
- $v(x) = \sup_{\tau \ge 0} E_x[\sum_{i=0}^{\tau-1} \beta^i c(Z_i) + \beta^{\tau} g(Z_{\tau})]$ value function

Description of OS Continues

• **Remark !** absorbing state e, p(e, e) = 1,

 $p(x,y) \longrightarrow \beta p(x,y), \ p(x,e) = 1 - \beta,$

 $\beta \longrightarrow \beta(x) = P_x(Z_1 \neq e)$ probability of "survival".

• $S_* = \{x : g(x) = v(x)\}$ optimal stopping set.

•
$$Pf = Pf(x) = \sum_{y} p(x, y)f(y).$$

Theorem (Shiryayev 1969)

(a) The value function v(x) is the minimal solution of Bellman equation ...

 $v = \max(g, c + Pv),$

(b) if state space X is finite then set S_* is not empty and $\tau_0 = \min\{n \ge 0 : Z_n \in S_*\}$ is an optimal stopping time. ...

Basic methods of solving OS of MC, $c \equiv 0$

- The direct solution of the Bellman equation
- The value iteration method : one considers the sequence of functions $v_n(x) = \sup_{0 \le \tau \le n} E_x \dots, v_{n+1}(x) = \max(g(x), Pv_n(x)),$ $v_0(x) = g(x)$. Then $v_0(x) \le v_1(x) \le \dots v_n(x)$ converges to v(x).
- The linear programming approach $(|X| < \infty)$, $\min \sum_{y \in X} v(y), v(x) \ge \sum_{y} p(x, y)v(y), v(x) \ge g(x), x \in X.$
- Davis and Karatzas (1994), interesting interpretation of the Doob-Meyer decomposition of the Snell's envelope
- The State Elimination Algorithm (SEA) Sonin (1995, 1999, 2005, 2008, 2010); A. Irle (1980, 2006);
 E. Presman (2009), continuos time

State Elimination Algorithm for OS of MC

- OS = Bellman equation v(x) = max(g(x), c(x) + Pv(x));
- $M_1 = (X_1, P = P_1, c = c_1, g), S_* = S_{1*}$. Three simple facts:
 - It may be *difficult* to find the states where it is optimal to stop, $g(x) \ge c(x) + P_1v(x)$, but it is easy to find a state (states) where it is optimal not to stop: do not stop if $g(z)c(z) + P_1g(z) \le c(z) + P_1v(z)$.
 - After identifying these states, set G, we can "eliminate" the subset D ⊂ G, and recalculate P₁ → P₂ and c₁ → c₂, g. Elimination theorem: S_{1*} = S_{2*}, v₁ = v₂. Repeat these steps until g(x) ≥ c_k(x) + P_kg(x) for all remaining x∈X_k. Then
 - **Proposition 1.** Let M = (X, P, c, g) be an optimal stopping problem, and $g(x) \ge c(x) + Pg(x)$ for all $x \in X$. Then X is the optimal stopping set in the problem M, and v(x) = g(x) for all $x \in X$.

Eliminate state(s) z, (set D) and recalculate probabilities

Embedded Markov chain (Kolmogorov, Doeblin) $M_1 = (X_1, P_1)$, $D \subset X_1, X_2 = X_1 \setminus D = S$; MC (Z_n) ; $\tau_0, \tau_1, ..., \tau_n, ...$, the moments of zero, first, and so on, visits of (Z_n) to the set X_2 . Let $Y_n = Z_{\tau_n}, n = 0, 1, 2, ...$

Lemma (KD)

(a) The random sequence (Y_n) is a Markov chain in a model $M_2 = (X_2, P_2)$, where $P_2 = \{p_2(x, y)\}$ is given by formula $D \quad S$ $P_1 = \begin{bmatrix} Q_1 & T_1 \\ R_1 & P_{01} \end{bmatrix}$, $P_2 = P_S = P_{01} + R_1 U_1 = P_{01} + R_1 N_1 T_1$, $N_1 = N_D$ is a (transient) fundamental matrix, i.e. $N_1 = (I - Q_1)^{-1}$. $N = I + Q + Q^2 + ... = (I - Q)^{-1}$, $N = \{n(x, y)\}$, U = NT.

State Elimination Algorithm, $c \equiv 0$

If $D = \{z\}$ then

$$p_2(x,y) = p_1(x,y) + p_1(x,z)n_1(z)p_1(z,y),$$

where $n_1(z) = 1/(1 - p_1(z, z))$. GTH/S algorithm (1985), inv. distr.

State Elimination Algorithm

Forget about OS, just MCs.

Let $M_i = (X_i, P_i)$ be two Markov models. Let i = 1, 2 and let $h: X_1 \longrightarrow X_2$ be a mapping, $H(t) = h^{-1}(t), t \in X_2$.

Let (Z_n) be a MC in M_1 and (Y_n) is defined by $Y_n = h(Z_n)$. Generally (Y_n) is not a MC. When it is ?

A necessary and sufficient condition for a MC to be "lumpable" (Kemeny, Snell, 1960), "mergeable" (Howard, 1971):

 X_1 is partitioned into $H(t), t \in X_2$,

$$\sum_{y\in H(k)} p_1(x,y) = \sum_{y\in H(k)} p_1(x',y)$$

for any $x, x' \in H(s)$ and any $s, k \in X_2$.

Projections of Markov Models (MCs)

Model M_2 is an *S*-projection of a basic model M_1 (under *h*) (Seas.) if there is a stochastic matrix P_2) and *m* dice, i.e.

 $p_1(x, y) = p_2(h(x), h(y))f(y|h(y))$

for all $x, y \in X_1$, where f(y|z) is a probability distribution on a set $H(z) = h^{-1}(z) = \{y \in X_1 : h(y) = z\}$, defined for each $z \in X_2$.

Model M_2 is a *B*-projection of a basic model M_1 (under *h*) if $h(x) \neq h(y)$, then transitions occur as above, and if h(x) = h(y), then

$p_1(x, y) = p_2(h(x), h(x))q_1(x, y|h(x)),$

where stoch. matrix $Q_1(k) = \{q_1(x|, y|k)\}$ is defined for each k. Model M_2 is an *A*-projection of...if f(y|h(y)) is replaced by f(y|h(x), h(y)), i.e. there are not m but m^2 dice, and maybe stochastic matrices $Q_1(k), k \in X_2$.

Back to OS of Seasonal Observations

The key element in applying SEA is calculation of P_S using N_D , where...

The key element in the proof of Theorem 1 - the transformation of the equality $P = U \times F$ into equality $P_S = U_S \times F_S$.

Let $D \subset X_1$, $S = X_1 \setminus D$ and we consider MC $(Z_{n,D})$ stopped at $S = X \setminus D$.

By SEA to find matrix P_S , we have to find $N_{1,D} = n_{1,D}(x, y), x, y \in X_1$.

Let MC $(U_{n,D})$ in model M_2 , be the "projection" of MC $(Z_{n,D})$, defined by the equality $U_{n,D} = h_D(Z_{n,D})$, where function $h_D(x) = h(x)$ if $x \in D$ and $h_D(X) = e$ if $x \in S$.

Let $N_{2,D}$ be fundamental matrix for this MC.

Our goal is: $P_S = U_S \times F_S$. Not. $F_d(A)$ diagonal matrix with elements $F(A(k)) = \sum_{j \in A(k)} f(j|k)$, $A(k) = A \cap H(k)$, and $U_A^F = UF_d(A)$.

Theorem (2)

The fundamental matrices in the original and the projected models, $N_{1,D}$ and $N_{2,D}$ are related by the equalities valid for all $x, y \in X_1$, $n_{1,D}(x, y) = n_{2,D}(s, k)f(y|k)/F(D(k)), s = h(x), k = h(y)$.

Using this theorem we can obtain the key lemma in PS 2010: Lemma

$$F_{S} = \{f_{S}(y|k) = f(y|k)/F(S(k))\},\$$

and

$$U_{S} = U_{S}^{F} + U_{D}^{F} (I - U_{D}^{F})^{-1} U_{S}^{F} = (I - U_{D}^{F})^{-1} U_{S}^{F}.$$

Open Problems.

- Transformation of Fundamental matrices for all projections
- OS of Hidden MC
- explanation of world financial crisis
- Thank you for your attention ! Danke schon ! Merci beaucoup !

Spasibo !

References

- Kemeny, J., Snell L., Finite Markov Chains. Springer-Verlag, 1960, 1983.
- Sonin, I. The Elimination Algorithm for the Problem of Optimal Stopping, — Mathematical Methods of Operations Research, 1999, v. 4, 1, pp. 111-123.
- Sonin, I. *The State Reduction and related algorithms and their applications to... and the Optimal Stopping problem,* Advances in Mathematics, 1999, v. 145, 2, pp. 159-188.—
- Presman, E., Sonin I. Optimal stopping of random sequences modulated by Markov chain, — Theory of Probability and Its Applications, 2010, v. 54, 3, pp. 534-542.
 - Sonin I. A generalized Gittins index for a Markov chain and its recursive calculation, Statistics & Probability Letters, 2008, v. 78, 12, pp. 1526-1533.