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How to compute the Jones polynomial of this knot?
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Draw the knot in the plane.
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Put a vertex in the middle of each dark region.
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Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Obtain a signed graph.
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Definition

The signed Tutte polynomial T (G ;A+,A−,B+,B−, x+, x−, y+, y−)
of a graph is given recursively by T (.) = 1 and

T (G ) =


xεT (G/e) if e is a coloop;

yεT (G\e) if e is a loop;

AεT (G/e) + BεT (G \ e) otherwise

Here ε is the sign of the edge e.
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Definition

The signed Tutte polynomial T (G ;A+,A−,B+,B−, x+, x−, y+, y−)
of a graph is given recursively by T (.) = 1 and

T (G ) =


xεT (G/e) if e is a coloop;

yεT (G\e) if e is a loop;

AεT (G/e) + BεT (G \ e) otherwise

Here ε is the sign of the edge e.

Setting xε = x , yε = y , Aε = 1 and Bε = 1 yields the original
definition of the Tutte polynomial.
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The Kauffman bracket is given by

〈D〉 = T (G (D);A,A−1,A−1,A,−A−3,−A3,−A3,−A−3).

If we substitute A4 = t−1 in (−A−3)w(D)〈D〉, then we obtain the
Jones polynomial of the knot D . Here w(D) is the writhe of the
knot.
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Tutte’s theorem
The theorem of Bollobás and Riordan

Consider a connected graph.
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Fix a numbering on its edges. We delete or contract them in
decreasing order in all possible ways. (⇒ We sum over all spanning
trees.)
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With respect to each spanning tree, each edge is internally or
externally active or inactive.
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1 is internally active because all external edges in the unique
cocycle closed by 1 have a larger number. (Bridges must be
contracted.)
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2 is externally active because all internal edges in the unique cycle
closed by 2 have a larger number. (Loops must be deleted.)

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Tutte’s theorem
The theorem of Bollobás and Riordan

2

9

3

3 is internally inactive because the external edge 2 in the unique
cocycle closed by 3 is smaller. (We could have deleted 3 and later
contracted 2.)
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4 is externally inactive because the internal edge 1 in the unique
cycle closed by 4 is smaller. (We could have contracted 4 and later
deleted 1.)
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Theorem (Tutte)

The Tutte polynomial T (G ; x , y) of a connected graph G is the
total weight of all spanning trees of G , where the weight of each
spanning tree is the product of the weights of the edges with
respect to this spanning tree: internally active edges have weight
x , externally active edges have weight y , all other edges have
weight 1. This polynomial is independent of the ordering fixed on
the edges.
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To show the deletion/contraction process is independent of
the edge ordering, it is sufficent to consider the special case
when i and i + 1 are swapped.
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To show the deletion/contraction process is independent of
the edge ordering, it is sufficent to consider the special case
when i and i + 1 are swapped.

ei

ei+1
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Tutte’s theorem
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internally active Xλ externally active Yλ
internally inactive xλ externally inactive yλ

Table: Variable assignment for an edge of color λ.

Definition

Number the edges of a connected colored graph G , and define the
weight of each edge with respect to each spanning tree using the
table above. Define the colored Tutte polynomial T (G ) as the
total weight of all spanning trees.

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Tutte’s theorem
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Theorem (Bollobás and Riordan)

The colored Tutte polynomial, defined as above, is independent of
the labeling if and only if we factor
Z[Λ] := Z[xλ, yλ,Xλ,Yλ : λ ∈ Λ] by an ideal I such that the

differences det

(
Xλ yλ
Xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
,

Yν det

(
xλ Yλ
xµ Yµ

)
− Yν det

(
xλ yλ
xµ yµ

)
and

Xν det

(
xλ Yλ
xµ Yµ

)
− Xν det

(
xλ yλ
xµ yµ

)
belong to I .

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations
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Remark

In our examples the values assigned to the variables xλ, yλ, Xλ and
Yλ are not zero. The ideal generated by all polynomials of the

forms det

(
Xλ yλ
Xµ yµ

)
− det

(
xλ yλ
xµ yµ

)
and

det

(
xλ yλ
xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
is a prime ideal.

We consider the colored Tutte polynomial as an element of
Z[Λ]/I1, where I1 is the prime ideal generated by the above
differences of determinants.

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Introducing the notion
Brylawski’s formula
The colored tensor product formula

Let us return to the signed graph of our “motivating example”.
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Deleting the horizontal edge in the middle gives this graph.

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Introducing the notion
Brylawski’s formula
The colored tensor product formula

Contracting the horizontal edge in the middle gives this graph.
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The graph obtained by deleting the middle edge is also obtained by
“triplicating” each edge . . .
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The graph obtained by contracting the middle edge is also
obtained by “triplicating” each edge . . .
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We will say that this graph is the “green” tensor product of . . .
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Similarly, this graph is the “red” tensor product of . . .
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NOT OVER YET!
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Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Introducing the notion
Brylawski’s formula
The colored tensor product formula

This graph is the “green” tensor product of . . .
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Introducing the notion
Brylawski’s formula
The colored tensor product formula

Definition

Let M and N be two graphs colored with the set Λ, λ ∈ Λ a fixed
color, and e a distinguished edge of N that is neither a loop nor a
bridge. The λ-tensor product of M and N, denoted by M ⊗λ N is
the colored graph obtained by replacing each edge in M of color λ
with a copy of N \ e, where the distinguished edge e is to be
identified with the replaced edge of M.

Remark

When |Λ| = 1, i.e., the graph is not colored, we obtain Brylawski’s
definition of a tensor product of two matroids, specialized to
graphs.

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Theorem (Brylawski)

The Tutte polynomial T (M ⊗ Ne) ∈ Z[x , y ] may be obtained from
T (M) ∈ Z[x , y ] by substituting T (N \ e)/TL(N, e) into x ,
T (N/e)/TC (N, e) into y , and multiplying the resulting rational
expression with TL(N, e)r(M)TC (N, e)|M|−r(M). That is,

T (M ⊗ Ne) =

TL(N, e)r(M)TC (N, e)|M|−r(M) · T
(
M;

T (N \ e)

TL(N, e)
,
T (N/e)

TC (N, e)

)
.

Here TL(N, e) are defined by the system of equations

T (N/e)− TC (N, e) = (y − 1)TL(N, e)
T (N \ e)− TL(N, e) = (x − 1)TC (N, e).

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Brylawski’s formula was used to prove the following result.

Theorem (Jaeger–Vertigan–Welsh)

To compute the Jones polynomial of an alternating knot is
#P-hard.

To compute the Jones polynomial of an alternating knot, one only
needs to know the (unsigned) Tutte polynomial of the associated
graph.

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Theorem (Diao-H.-Hinson)

Let M be a colored graph and N a colored graph with a
distinguished edge e that is neither a loop nor a bridge. Then the
ordinary Tutte polynomial T (M ⊗λ N) can be computed from
T (M) by keeping all variables of color µ 6= λ unchanged, and using
the substitutions Xλ 7→ T (N \ e), xλ 7→ TL(N, e), Yλ 7→ T (N/e)
and yλ 7→ TC (N, e).

But what are TC (N, e) and TL(N, e)?

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula
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Definition

Define TL(N, e) by the same rule as T (N \ e) except that
internally active edges on a cycle closed by e will be considered as
internally inactive instead.
Define TC (N, e) by the same rule as T (N/e) except that
externally active edges that would close a cycle containing e will be
considered as externally inactive instead.

Motto: “e has the smallest label.”
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Theorem (Diao-H.-Hinson)

The following two equalities hold:

xλ(T (N/e)− TC (N, e)) = (Yλ − yλ)TL(N, e), (1)

yλ(T (N \ e)− TL(N, e)) = (Xλ − xλ)TC (N, e). (2)

Corollary (Diao-H.-Hinson)

The polynomials TC (N, e) and TL(N, e) are independent of the
labeling. They may be equivalently defined by all equations (1)
and (2).

Here we use that we have factored by a prime ideal.
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Equations (1) and (2) are also equivalent to:

det

(
TL(N, e) TC (N, e)
xλ yλ

)
= det

(
TL(N, e) T (N/e)
xλ Yλ

)
(3)

and

det

(
TL(N, e) TC (N, e)
xλ yλ

)
= det

(
T (N \ e) TC (N, e)
Xλ yλ

)
.

(4)

This reformulation implies that the substitutions Xλ 7→ T (N \ e),
xλ 7→ TL(N, e), Yλ 7→ T (N/e) and yλ 7→ TC (N, e) induce an
endomorphism of Z[Λ]/I1.
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The proof of (1) and (2) uses some nontrivial combinatorics and
the fact that the following identities hold in Z[Λ]/I1:

xλ

(
k∏

i=1

Yλi −
k∏

i=1

yλi

)
= (Yλ − yλ)

k∑
i=1

xλi

i−1∏
j=1

Yλj

k∏
t=i+1

yλt ,

yλ

(
k∏

i=1

Xλi −
k∏

i=1

xλi

)
= (Xλ − xλ)

k∑
i=1

yλi

i−1∏
j=1

Xλj

k∏
t=i+1

xλt .
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Proof of the colored tensor product formula.
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The Jones polynomial of our motivating example is

VK (t) = t−10(1− 4t + 12t2 − 26t3 + 49t4 − 74t5 + 96t6 − 112t7

+ 110t8 − 97t9 + 77t10 − 47t11 + 23t12 − 8t13 − 2t14 + 3t15

− t16 + t17).

Matches the result found by the program Knotscape.
For the Kauffman brackets, the homomorphic images of TC (N)
and TL(N) are the solutions of the system of equations

(−A3 − A−1) · zL + A · zC = A · 〈N/e〉
A−1 · zL + (−A−3 − A) · zC = A−1 · 〈N \ e〉. (5)
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Consider a graph G whose edges are labeled with the probability
that the edge fails.

Fortuin and Kasteleyn introduced the following cluster-generating
function:

Z (G ; p, κ) =
∑
C⊆E

pCqE\Cκk(C).

Here κ is a variable. Taking the tensor product corresponds to
analyzing “networks of networks”.
Swept under the rug: We need to consider a disconnected graph
generalization of the colored Tutte polynomial.
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Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Computing the Jones polynomial of a composite knot
Accidents in networks of networks
Virtual knots

Consider a graph G whose edges are labeled with the probability
that the edge fails.
Fortuin and Kasteleyn introduced the following cluster-generating
function:

Z (G ; p, κ) =
∑
C⊆E

pCqE\Cκk(C).

Here κ is a variable. Taking the tensor product corresponds to
analyzing “networks of networks”.
Swept under the rug: We need to consider a disconnected graph
generalization of the colored Tutte polynomial.
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A peak under the rug: the chromatic polynomial π(G ; x).

It is defined as the number of x-colorings of the vertex set of a
graph G . It is connected to the Tutte polynomial T (G ; x , y) by
the formula

π(G ; x) = (−1)v(G)−c(G)xc(G)T (G ; 1− x , 0)

where v(G ) is the number of vertices and c(G ) is the number of
connected components.
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The (colored) Tutte polynomial itself is a matroid invariant, which
only depends on the circuit structure.
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Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Brylawski’s tensor product formula



Outline
A motivating example

The signed Tutte polynomial in knot theory
Computing a (colored) Tutte-polynomial by activities

Tensor products
Applications and generalizations

Computing the Jones polynomial of a composite knot
Accidents in networks of networks
Virtual knots

The (colored) Tutte polynomial itself is a matroid invariant, which
only depends on the circuit structure.
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The pointed random-cluster-generating functions ZC (N, e; p, κ)
and
ZL(N, e; p, κ) are given by

ZC (N, e; p, κ) =
Z (N \ e; p, κ)− Z (N/e; p, κ)

κ− 1
,

ZL(N, e; p, κ) =
κZ (N/e; p, κ)− Z (N \ e; p, κ)

κ− 1
.

Proposition (Diao-H.-Hinson)

The probability that the endpoints of e become disconnected after
an accident in N \ e is ZC (N, e; p, 1), and the probability that they
remain connected is ZL(N, e; p, 1).
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0

_ _

Kauffman has a theory of virtual knots for knots drawn on different
surfaces. These may be drawn in the plane with virtual crossings.
There is an alternative approach (Chmutov, Pak, Kamada) , using
the Bollobás-Riordan polynomial (unrelated to the colored Tutte
polynomial). Chmutov has established a link between the two
approaches.
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Let G be a graph and H ⊆ E (G ).
C ⊆ E (G ) \ H is a contracting set if it contains no cycles and
D = E (G ) \ (C ∪ H) is the corresponding deleting set).
Label the edges (φ : E (G )→ R+) in H with 0 and the edges in
E (G ) \ H with distinct positive integers.

a) an edge e ∈ C is internally active if D ∪ {e} contains a
cocycle D0 in which e is the smallest edge. otherwise it is
internally inactive.

b) an edge f ∈ D is called externally active if C ∪ {f } contains a
cycle C0 in which f is the smallest edge.
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Let ψ be a mapping defined on the isomorphism classes of finite
connected graphs with values in a ring R. Assume ψ is a block
invariant, i.e., for any connected graph G having n blocks G1, . . . ,
Gn we have

ψ(G ) = fn(ψ(G1), . . . , ψ(Gn)),

for some fn : Rn → R that is symmetric under permuting its input
variables.
Assume also that ψ is invariant under vertex pivots:
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Let ψ be a mapping defined on the isomorphism classes of finite
connected graphs with values in a ring R. Assume ψ is a block
invariant, i.e., for any connected graph G having n blocks G1, . . . ,
Gn we have

ψ(G ) = fn(ψ(G1), . . . , ψ(Gn)),

for some fn : Rn → R that is symmetric under permuting its input
variables.
Assume also that ψ is invariant under vertex pivots.

We define the relative Tutte polynomial as

Tψ
H(G ) =

∑
C

( ∏
e∈G\H

w(G , c , φ, C, e)
)
ψ(HC) ∈ R[Λ]. (6)
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We have the following analogue of the Bollobás-Riordan theorem:

Theorem (Diao-H.)

Assume I is an ideal of R[Λ]. Then the homomorphic image of
TH(G , φ) in R[Λ]/I is independent of φ (for any G and ψ) if and
only if

det

(
Xλ yλ
Xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
∈ I (7)

and

det

(
xλ Yλ
xµ Yµ

)
− det

(
xλ yλ
xµ yµ

)
∈ I . (8)

hold for all λ, µ ∈ Λ.
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Thank you!

Please read:
[1] Tutte Polynomials of Tensor Products of Signed Graphs and

their Applications in Knot Theory, Journal of Knot Theory and Its
Ramifications 18 (2009), 561–589. (With Y. Diao and K. Hinson.)
[2] A Tutte-style proof of Brylawski’s tensor product formula,

European Journal of Combinatorics 32 (2011), 775–781. (With Y.
Diao and K. Hinson.)
[3] Invariants of composite networks arising as a tensor product,

Graphs and Combinatorics 25 (2009), 273-290. (With Y. Diao and
K. Hinson.)
[4] Relative Tutte Polynomials for Colored Graphs and Virtual

Knot Theory, Combinatorics, Probability & Computing, 19 (2010),
343-369. (With Y. Diao.)
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