Brylawski's tensor product formula for Tutte polynomials of colored graphs

Yuanan Diao, Gábor Hetyei, and Kenneth Hinson Department of Mathematics and Statistics University of North Carolina Charlotte

February 13, 2023
(1) A motivating example
(2) The signed Tutte polynomial in knot theory
(3) Computing a (colored) Tutte-polynomial by activities

- Tutte's theorem
- The theorem of Bollobás and Riordan
(4) Tensor products
- Introducing the notion
- Brylawski's formula
- The colored tensor product formula
(5) Applications and generalizations
- Computing the Jones polynomial of a composite knot
- Accidents in networks of networks
- Virtual knots

How to compute the Jones polynomial of this knot?

Draw the knot in the plane.

Two-color its regions. (The dual graph is bipartite.)

Put a vertex in the middle of each dark region.

Draw a positive edge across each positive crossing.

Draw a negative edge across each negative crossing.

Obtain a signed graph.

Compute the signed Tutte polynomial of this signed graph ...

A similar alternating knot, yielding only positive edges.

A similar alternating knot, yielding only positive edges.

A similar alternating knot, yielding only positive edges.

Definition

The signed Tutte polynomial $T\left(G ; A_{+}, A_{-}, B_{+}, B_{-}, x_{+}, x_{-}, y_{+}, y_{-}\right)$ of a graph is given recursively by $T()=$.1 and

$$
T(G)= \begin{cases}x_{\varepsilon} T(G / e) & \text { if } e \text { is a coloop; } \\ y_{\varepsilon} T(G \backslash e) & \text { if } e \text { is a loop; } \\ A_{\varepsilon} T(G / e)+B_{\varepsilon} T(G \backslash e) & \text { otherwise }\end{cases}
$$

Here ε is the sign of the edge e.

Definition

The signed Tutte polynomial $T\left(G ; A_{+}, A_{-}, B_{+}, B_{-}, x_{+}, x_{-}, y_{+}, y_{-}\right)$ of a graph is given recursively by $T()=$.1 and

$$
T(G)= \begin{cases}x_{\varepsilon} T(G / e) & \text { if } e \text { is a coloop; } \\ y_{\varepsilon} T(G \backslash e) & \text { if } e \text { is a loop; } \\ A_{\varepsilon} T(G / e)+B_{\varepsilon} T(G \backslash e) & \text { otherwise }\end{cases}
$$

Here ε is the sign of the edge e.
Setting $x_{\varepsilon}=x, y_{\varepsilon}=y, A_{\varepsilon}=1$ and $B_{\varepsilon}=1$ yields the original definition of the Tutte polynomial.

The signed Tutte polynomial in knot theory Computing a (colored) Tutte-polynomial by activities Tensor products Applications and generalizations

The Kauffman bracket is given by

$$
\langle D\rangle=T\left(G(D) ; A, A^{-1}, A^{-1}, A,-A^{-3},-A^{3},-A^{3},-A^{-3}\right) .
$$

The Kauffman bracket is given by

$$
\langle D\rangle=T\left(G(D) ; A, A^{-1}, A^{-1}, A,-A^{-3},-A^{3},-A^{3},-A^{-3}\right) .
$$

If we substitute $A^{4}=t^{-1}$ in $\left(-A^{-3}\right)^{w(D)}\langle D\rangle$, then we obtain the Jones polynomial of the knot D. Here $w(D)$ is the writhe of the knot.

Consider a connected graph.

Fix a numbering on its edges. We delete or contract them in decreasing order in all possible ways. (\Rightarrow We sum over all spanning trees.)

With respect to each spanning tree, each edge is internally or externally active or inactive.

1 is internally active because all external edges in the unique cocycle closed by 1 have a larger number. (Bridges must be contracted.)

2 is externally active because all internal edges in the unique cycle closed by 2 have a larger number. (Loops must be deleted.)

3 is internally inactive because the external edge 2 in the unique cocycle closed by 3 is smaller. (We could have deleted 3 and later contracted 2.)

4 is externally inactive because the internal edge 1 in the unique cycle closed by 4 is smaller. (We could have contracted 4 and later deleted 1.)

Theorem (Tutte)

The Tutte polynomial $T(G ; x, y)$ of a connected graph G is the total weight of all spanning trees of G, where the weight of each spanning tree is the product of the weights of the edges with respect to this spanning tree: internally active edges have weight x, externally active edges have weight y, all other edges have weight 1 . This polynomial is independent of the ordering fixed on the edges.

The signed Tutte polynomial in knot theory Computing a (colored) Tutte-polynomial by activities Tensor products Applications and generalizations

Tutte's theorem
The theorem of Bollobás and Riordan

To show the deletion/contraction process is independent of the edge ordering, it is sufficent to consider the special case when i and $i+1$ are swapped.

To show the deletion/contraction process is independent of the edge ordering, it is sufficent to consider the special case when i and $i+1$ are swapped.

To show the deletion/contraction process is independent of the edge ordering, it is sufficent to consider the special case when i and $i+1$ are swapped.

internally active	X_{λ}	externally active	Y_{λ}
internally inactive	x_{λ}	externally inactive	y_{λ}

Table: Variable assignment for an edge of color λ.

Definition

Number the edges of a connected colored graph G, and define the weight of each edge with respect to each spanning tree using the table above. Define the colored Tutte polynomial $T(G)$ as the total weight of all spanning trees.

Theorem (Bollobás and Riordan)

The colored Tutte polynomial, defined as above, is independent of the labeling if and only if we factor $\mathbb{Z}[\Lambda]:=\mathbb{Z}\left[x_{\lambda}, y_{\lambda}, X_{\lambda}, Y_{\lambda}: \lambda \in \Lambda\right]$ by an ideal I such that the $\operatorname{differences} \operatorname{det}\left(\begin{array}{ll}X_{\lambda} & y_{\lambda} \\ X_{\mu} & y_{\mu}\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}x_{\lambda} & Y_{\lambda} \\ x_{\mu} & Y_{\mu}\end{array}\right)$,
$Y_{\nu} \operatorname{det}\left(\begin{array}{ll}x_{\lambda} & Y_{\lambda} \\ x_{\mu} & Y_{\mu}\end{array}\right)-Y_{\nu} \operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)$ and
$X_{\nu} \operatorname{det}\left(\begin{array}{cc}x_{\lambda} & Y_{\lambda} \\ x_{\mu} & Y_{\mu}\end{array}\right)-X_{\nu} \operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)$ belong to I.

Remark

In our examples the values assigned to the variables $x_{\lambda}, y_{\lambda}, X_{\lambda}$ and Y_{λ} are not zero. The ideal generated by all polynomials of the forms $\operatorname{det}\left(\begin{array}{ll}X_{\lambda} & y_{\lambda} \\ X_{\mu} & y_{\mu}\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)$ and $\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & Y_{\lambda} \\ x_{\mu} & Y_{\mu}\end{array}\right)$ is a prime ideal.

Remark

In our examples the values assigned to the variables $x_{\lambda}, y_{\lambda}, X_{\lambda}$ and Y_{λ} are not zero. The ideal generated by all polynomials of the forms $\operatorname{det}\left(\begin{array}{ll}X_{\lambda} & y_{\lambda} \\ X_{\mu} & y_{\mu}\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)$ and $\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & y_{\lambda} \\ x_{\mu} & y_{\mu}\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}x_{\lambda} & Y_{\lambda} \\ x_{\mu} & Y_{\mu}\end{array}\right)$ is a prime ideal.

We consider the colored Tutte polynomial as an element of $\mathbb{Z}[\Lambda] / I_{1}$, where I_{1} is the prime ideal generated by the above differences of determinants.

Let us return to the signed graph of our "motivating example".

Deleting the horizontal edge in the middle gives this graph.

Contracting the horizontal edge in the middle gives this graph.

The graph obtained by deleting the middle edge is also obtained by "triplicating" each edge...

Applications and generalizations

... in this graph.

The graph obtained by contracting the middle edge is also obtained by "triplicating" each edge...

... in this graph.

Applications and generalizations

We will say that this graph is the "green" tensor product of ...

Applications and generalizations

... this graph, and of ...

Similarly, this graph is the "red" tensor product of ...

this graph, and of ...

... this graph.

NOT OVER YET!

This graph is the "green" tensor product of ...

this graph, and of ...

...this graph, and

... this graph is the "red" tensor product of ...

... this graph, and of ...

... this graph.

Definition

Let M and N be two graphs colored with the set $\Lambda, \lambda \in \Lambda$ a fixed color, and e a distinguished edge of N that is neither a loop nor a bridge. The λ-tensor product of M and N, denoted by $M \otimes_{\lambda} N$ is the colored graph obtained by replacing each edge in M of color λ with a copy of $N \backslash e$, where the distinguished edge e is to be identified with the replaced edge of M.

Remark

When $|\Lambda|=1$, i.e., the graph is not colored, we obtain Brylawski's definition of a tensor product of two matroids, specialized to graphs.

Theorem (Brylawski)

The Tutte polynomial $T\left(M \otimes N_{e}\right) \in \mathbb{Z}[x, y]$ may be obtained from $T(M) \in \mathbb{Z}[x, y]$ by substituting $T(N \backslash e) / T_{L}(N, e)$ into x, $T(N / e) / T_{C}(N, e)$ into y, and multiplying the resulting rational expression with $T_{L}(N, e)^{r(M)} T_{C}(N, e)^{|M|-r(M)}$. That is,

$$
\begin{gathered}
T\left(M \otimes N_{e}\right)= \\
T_{L}(N, e)^{r(M)} T_{C}(N, e)^{|M|-r(M)} \cdot T\left(M ; \frac{T(N \backslash e)}{T_{L}(N, e)}, \frac{T(N / e)}{T_{C}(N, e)}\right) .
\end{gathered}
$$

Here $T_{L}(N, e)$ are defined by the system of equations

$$
\begin{aligned}
T(N / e)-T_{C}(N, e) & =(y-1) T_{L}(N, e) \\
T(N \backslash e)-T_{L}(N, e) & =(x-1) T_{C}(N, e) .
\end{aligned}
$$

Brylawski's formula was used to prove the following result.

Theorem (Jaeger-Vertigan-Welsh)
To compute the Jones polynomial of an alternating knot is \#P-hard.

Brylawski's formula was used to prove the following result.

Theorem (Jaeger-Vertigan-Welsh)

To compute the Jones polynomial of an alternating knot is \#P-hard.

To compute the Jones polynomial of an alternating knot, one only needs to know the (unsigned) Tutte polynomial of the associated graph.

Theorem (Diao-H.-Hinson)

Let M be a colored graph and N a colored graph with a distinguished edge e that is neither a loop nor a bridge. Then the ordinary Tutte polynomial $T\left(M \otimes_{\lambda} N\right)$ can be computed from $T(M)$ by keeping all variables of color $\mu \neq \lambda$ unchanged, and using the substitutions $X_{\lambda} \mapsto T(N \backslash e), x_{\lambda} \mapsto T_{L}(N, e), Y_{\lambda} \mapsto T(N / e)$ and $y_{\lambda} \mapsto T_{C}(N, e)$.

Theorem (Diao-H.-Hinson)

Let M be a colored graph and N a colored graph with a distinguished edge e that is neither a loop nor a bridge. Then the ordinary Tutte polynomial $T\left(M \otimes_{\lambda} N\right)$ can be computed from $T(M)$ by keeping all variables of color $\mu \neq \lambda$ unchanged, and using the substitutions $X_{\lambda} \mapsto T(N \backslash e), x_{\lambda} \mapsto T_{L}(N, e), Y_{\lambda} \mapsto T(N / e)$ and $y_{\lambda} \mapsto T_{C}(N, e)$.

But what are $T_{C}(N, e)$ and $T_{L}(N, e)$?

Definition

Define $T_{L}(N, e)$ by the same rule as $T(N \backslash e)$ except that internally active edges on a cycle closed by e will be considered as internally inactive instead.
Define $T_{C}(N, e)$ by the same rule as $T(N / e)$ except that externally active edges that would close a cycle containing e will be considered as externally inactive instead.

Definition

Define $T_{L}(N, e)$ by the same rule as $T(N \backslash e)$ except that internally active edges on a cycle closed by e will be considered as internally inactive instead.
Define $T_{C}(N, e)$ by the same rule as $T(N / e)$ except that externally active edges that would close a cycle containing e will be considered as externally inactive instead.

Motto: "e has the smallest label."

Theorem (Diao-H.-Hinson)

The following two equalities hold:

$$
\begin{align*}
x_{\lambda}\left(T(N / e)-T_{C}(N, e)\right) & =\left(Y_{\lambda}-y_{\lambda}\right) T_{L}(N, e) \tag{1}\\
y_{\lambda}\left(T(N \backslash e)-T_{L}(N, e)\right) & =\left(X_{\lambda}-x_{\lambda}\right) T_{C}(N, e) \tag{2}
\end{align*}
$$

Theorem (Diao-H.-Hinson)

The following two equalities hold:

$$
\begin{align*}
x_{\lambda}\left(T(N / e)-T_{C}(N, e)\right) & =\left(Y_{\lambda}-y_{\lambda}\right) T_{L}(N, e), \tag{1}\\
y_{\lambda}\left(T(N \backslash e)-T_{L}(N, e)\right) & =\left(X_{\lambda}-x_{\lambda}\right) T_{C}(N, e) \tag{2}
\end{align*}
$$

Corollary (Diao-H.-Hinson)

The polynomials $T_{C}(N, e)$ and $T_{L}(N, e)$ are independent of the labeling. They may be equivalently defined by all equations (1) and (2).

Theorem (Diao-H.-Hinson)

The following two equalities hold:

$$
\begin{align*}
x_{\lambda}\left(T(N / e)-T_{C}(N, e)\right) & =\left(Y_{\lambda}-y_{\lambda}\right) T_{L}(N, e), \tag{1}\\
y_{\lambda}\left(T(N \backslash e)-T_{L}(N, e)\right) & =\left(X_{\lambda}-x_{\lambda}\right) T_{C}(N, e) \tag{2}
\end{align*}
$$

Corollary (Diao-H.-Hinson)

The polynomials $T_{C}(N, e)$ and $T_{L}(N, e)$ are independent of the labeling. They may be equivalently defined by all equations (1) and (2).

Here we use that we have factored by a prime ideal.

Equations (1) and (2) are also equivalent to:

$$
\operatorname{det}\left(\begin{array}{cc}
T_{L}(N, e) & T_{C}(N, e) \tag{3}\\
x_{\lambda} & y_{\lambda}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
T_{L}(N, e) & T(N / e) \\
x_{\lambda} & Y_{\lambda}
\end{array}\right)
$$

and

$$
\operatorname{det}\left(\begin{array}{cc}
T_{L}(N, e) & T_{C}(N, e) \tag{4}\\
x_{\lambda} & y_{\lambda}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
T(N \backslash e) & T_{C}(N, e) \\
X_{\lambda} & y_{\lambda}
\end{array}\right) .
$$

Equations (1) and (2) are also equivalent to:

$$
\operatorname{det}\left(\begin{array}{ll}
T_{L}(N, e) & T_{C}(N, e) \tag{3}\\
x_{\lambda} & y_{\lambda}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
T_{L}(N, e) & T(N / e) \\
x_{\lambda} & Y_{\lambda}
\end{array}\right)
$$

and

$$
\operatorname{det}\left(\begin{array}{ll}
T_{L}(N, e) & T_{C}(N, e) \tag{4}\\
x_{\lambda} & y_{\lambda}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
T(N \backslash e) & T_{C}(N, e) \\
X_{\lambda} & y_{\lambda}
\end{array}\right) .
$$

This reformulation implies that the substitutions $X_{\lambda} \mapsto T(N \backslash e)$, $x_{\lambda} \mapsto T_{L}(N, e), Y_{\lambda} \mapsto T(N / e)$ and $y_{\lambda} \mapsto T_{C}(N, e)$ induce an endomorphism of $\mathbb{Z}[\Lambda] / I_{1}$.

The proof of (1) and (2) uses some nontrivial combinatorics and the fact that the following identities hold in $\mathbb{Z}[\Lambda] / /_{1}$:

$$
\begin{aligned}
& x_{\lambda}\left(\prod_{i=1}^{k} y_{\lambda_{i}}-\prod_{i=1}^{k} y_{\lambda_{i}}\right)=\left(Y_{\lambda}-y_{\lambda}\right) \sum_{i=1}^{k} x_{\lambda_{i}} \prod_{j=1}^{i-1} Y_{\lambda_{j}} \prod_{t=i+1}^{k} y_{\lambda_{t}} \\
& y_{\lambda}\left(\prod_{i=1}^{k} x_{\lambda_{i}}-\prod_{i=1}^{k} x_{\lambda_{i}}\right)=\left(x_{\lambda}-x_{\lambda}\right) \sum_{i=1}^{k} y_{\lambda_{i}} \prod_{j=1}^{i-1} x_{\lambda_{j}} \prod_{t=i+1}^{k} x_{\lambda_{t}}
\end{aligned}
$$

Proof of the colored tensor product formula.

A spanning tree of

Proof of the colored tensor product formula.

is

The Jones polynomial of our motivating example is

$$
\begin{aligned}
V_{K}(t) & =t^{-10}\left(1-4 t+12 t^{2}-26 t^{3}+49 t^{4}-74 t^{5}+96 t^{6}-112 t^{7}\right. \\
& +110 t^{8}-97 t^{9}+77 t^{10}-47 t^{11}+23 t^{12}-8 t^{13}-2 t^{14}+3 t^{15} \\
& \left.-t^{16}+t^{17}\right)
\end{aligned}
$$

Matches the result found by the program Knotscape.
For the Kauffman brackets, the homomorphic images of $T_{C}(N)$ and $T_{L}(N)$ are the solutions of the system of equations

$$
\begin{align*}
\left(-A^{3}-A^{-1}\right) \cdot z_{L}+A \cdot z_{C} & =A \cdot\langle N / e\rangle \\
A^{-1} \cdot z_{L}+\left(-A^{-3}-A\right) \cdot z_{C} & =A^{-1} \cdot\langle N \backslash e\rangle . \tag{5}
\end{align*}
$$

Consider a graph G whose edges are labeled with the probability that the edge fails.

Consider a graph G whose edges are labeled with the probability that the edge fails.
Fortuin and Kasteleyn introduced the following cluster-generating function:

Consider a graph G whose edges are labeled with the probability that the edge fails.
Fortuin and Kasteleyn introduced the following cluster-generating function:

$$
Z(G ; p, \kappa)=\sum_{C \subseteq E} p^{C} q^{E \backslash C} \kappa^{k(C)}
$$

Consider a graph G whose edges are labeled with the probability that the edge fails.
Fortuin and Kasteleyn introduced the following cluster-generating function:

$$
Z(G ; p, \kappa)=\sum_{C \subseteq E} p^{C} q^{E \backslash C} \kappa^{k(C)}
$$

Here κ is a variable. Taking the tensor product corresponds to analyzing "networks of networks".

Consider a graph G whose edges are labeled with the probability that the edge fails.
Fortuin and Kasteleyn introduced the following cluster-generating function:

$$
Z(G ; p, \kappa)=\sum_{C \subseteq E} p^{C} q^{E \backslash C} \kappa^{k(C)}
$$

Here κ is a variable. Taking the tensor product corresponds to analyzing "networks of networks".
Swept under the rug: We need to consider a disconnected graph generalization of the colored Tutte polynomial.

A peak under the rug: the chromatic polynomial $\pi(G ; x)$.

A peak under the rug: the chromatic polynomial $\pi(G ; x)$. It is defined as the number of x-colorings of the vertex set of a graph G.

A peak under the rug: the chromatic polynomial $\pi(G ; x)$. It is defined as the number of x-colorings of the vertex set of a graph G. It is connected to the Tutte polynomial $T(G ; x, y)$ by the formula

$$
\pi(G ; x)=(-1)^{v(G)-c(G)} x^{c(G)} T(G ; 1-x, 0)
$$

A peak under the rug: the chromatic polynomial $\pi(G ; x)$. It is defined as the number of x-colorings of the vertex set of a graph G. It is connected to the Tutte polynomial $T(G ; x, y)$ by the formula

$$
\pi(G ; x)=(-1)^{v(G)-c(G)} x^{c(G)} T(G ; 1-x, 0)
$$

where $v(G)$ is the number of vertices and $c(G)$ is the number of connected components.

Computing the Jones polynomial of a composite knot Accidents in networks of networks Virtual knots

The (colored) Tutte polynomial itself is a matroid invariant, which only depends on the circuit structure.

The (colored) Tutte polynomial itself is a matroid invariant, which only depends on the circuit structure.

Computing the Jones polynomial of a composite knot Accidents in networks of networks Virtual knots

The (colored) Tutte polynomial itself is a matroid invariant, which only depends on the circuit structure.

The (colored) Tutte polynomial itself is a matroid invariant, which only depends on the circuit structure.

The pointed random-cluster-generating functions $Z_{C}(N, e ; p, \kappa)$ and
$Z_{L}(N, e ; p, \kappa)$ are given by

$$
\begin{aligned}
Z_{C}(N, e ; p, \kappa) & =\frac{Z(N \backslash e ; p, \kappa)-Z(N / e ; p, \kappa)}{\kappa-1} \\
Z_{L}(N, e ; p, \kappa) & =\frac{\kappa Z(N / e ; p, \kappa)-Z(N \backslash e ; p, \kappa)}{\kappa-1}
\end{aligned}
$$

The pointed random-cluster-generating functions $Z_{C}(N, e ; p, \kappa)$ and
$Z_{L}(N, e ; p, \kappa)$ are given by

$$
\begin{aligned}
Z_{C}(N, e ; p, \kappa) & =\frac{Z(N \backslash e ; p, \kappa)-Z(N / e ; p, \kappa)}{\kappa-1} \\
Z_{L}(N, e ; p, \kappa) & =\frac{\kappa Z(N / e ; p, \kappa)-Z(N \backslash e ; p, \kappa)}{\kappa-1}
\end{aligned}
$$

Proposition (Diao-H.-Hinson)

The probability that the endpoints of e become disconnected after an accident in $N \backslash e$ is $Z_{C}(N, e ; p, 1)$, and the probability that they remain connected is $Z_{L}(N, e ; p, 1)$.

Kauffman has a theory of virtual knots for knots drawn on different surfaces. These may be drawn in the plane with virtual crossings. There is an alternative approach (Chmutov, Pak, Kamada), using the Bollobás-Riordan polynomial (unrelated to the colored Tutte polynomial). Chmutov has established a link between the two approaches.

Let G be a graph and $\mathcal{H} \subseteq E(G)$.
$\mathcal{C} \subseteq E(G) \backslash \mathcal{H}$ is a contracting set if it contains no cycles and
$\mathcal{D}=E(G) \backslash(\mathcal{C} \cup \mathcal{H})$ is the corresponding deleting set).
Label the edges $\left(\phi: E(G) \rightarrow \mathbb{R}_{+}\right)$in \mathcal{H} with 0 and the edges in
$E(G) \backslash \mathcal{H}$ with distinct positive integers.
a) an edge $e \in \mathcal{C}$ is internally active if $\mathcal{D} \cup\{e\}$ contains a cocycle D_{0} in which e is the smallest edge. otherwise it is internally inactive.
b) an edge $f \in \mathcal{D}$ is called externally active if $\mathcal{C} \cup\{f\}$ contains a cycle C_{0} in which f is the smallest edge.

Let ψ be a mapping defined on the isomorphism classes of finite connected graphs with values in a ring \mathcal{R}. Assume ψ is a block invariant, i.e., for any connected graph G having n blocks G_{1}, \ldots, G_{n} we have

$$
\psi(G)=f_{n}\left(\psi\left(G_{1}\right), \ldots, \psi\left(G_{n}\right)\right),
$$

for some $f_{n}: \mathcal{R}^{n} \rightarrow \mathcal{R}$ that is symmetric under permuting its input variables.
Assume also that ψ is invariant under vertex pivots:

Let ψ be a mapping defined on the isomorphism classes of finite connected graphs with values in a ring \mathcal{R}. Assume ψ is a block invariant, i.e., for any connected graph G having n blocks G_{1}, \ldots, G_{n} we have

$$
\psi(G)=f_{n}\left(\psi\left(G_{1}\right), \ldots, \psi\left(G_{n}\right)\right),
$$

for some $f_{n}: \mathcal{R}^{n} \rightarrow \mathcal{R}$ that is symmetric under permuting its input variables.
Assume also that ψ is invariant under vertex pivots:

Let ψ be a mapping defined on the isomorphism classes of finite connected graphs with values in a ring \mathcal{R}. Assume ψ is a block invariant, i.e., for any connected graph G having n blocks G_{1}, \ldots, G_{n} we have

$$
\psi(G)=f_{n}\left(\psi\left(G_{1}\right), \ldots, \psi\left(G_{n}\right)\right),
$$

for some $f_{n}: \mathcal{R}^{n} \rightarrow \mathcal{R}$ that is symmetric under permuting its input variables.
Assume also that ψ is invariant under vertex pivots:

Let ψ be a mapping defined on the isomorphism classes of finite connected graphs with values in a ring \mathcal{R}. Assume ψ is a block invariant, i.e., for any connected graph G having n blocks G_{1}, \ldots, G_{n} we have

$$
\psi(G)=f_{n}\left(\psi\left(G_{1}\right), \ldots, \psi\left(G_{n}\right)\right),
$$

for some $f_{n}: \mathcal{R}^{n} \rightarrow \mathcal{R}$ that is symmetric under permuting its input variables.
Assume also that ψ is invariant under vertex pivots.

We define the relative Tutte polynomial as

$$
\begin{equation*}
T_{\mathcal{H}}^{\psi}(G)=\sum_{\mathcal{C}}\left(\prod_{e \in G \backslash H} w(G, c, \phi, \mathcal{C}, e)\right) \psi\left(\mathcal{H}_{\mathcal{C}}\right) \in \mathcal{R}[\Lambda] . \tag{6}
\end{equation*}
$$

We have the following analogue of the Bollobás-Riordan theorem:

Theorem (Diao-H.)

Assume I is an ideal of $\mathcal{R}[\Lambda]$. Then the homomorphic image of $T_{\mathcal{H}}(G, \phi)$ in $\mathcal{R}[\Lambda] / I$ is independent of ϕ (for any G and ψ) if and only if

$$
\operatorname{det}\left(\begin{array}{ll}
X_{\lambda} & y_{\lambda} \tag{7}\\
X_{\mu} & y_{\mu}
\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}
x_{\lambda} & Y_{\lambda} \\
x_{\mu} & Y_{\mu}
\end{array}\right) \in I
$$

and

$$
\operatorname{det}\left(\begin{array}{cc}
x_{\lambda} & Y_{\lambda} \tag{8}\\
x_{\mu} & Y_{\mu}
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
x_{\lambda} & y_{\lambda} \\
x_{\mu} & y_{\mu}
\end{array}\right) \in I
$$

hold for all $\lambda, \mu \in \Lambda$.

Computing the Jones polynomial of a composite knot Accidents in networks of networks
Virtual knots

Thank you!

Thank you!

Please read:
[1] Tutte Polynomials of Tensor Products of Signed Graphs and their Applications in Knot Theory, Journal of Knot Theory and Its Ramifications 18 (2009), 561-589. (With Y. Diao and K. Hinson.) [2] A Tutte-style proof of Brylawski's tensor product formula, European Journal of Combinatorics 32 (2011), 775-781. (With Y. Diao and K. Hinson.)
[3] Invariants of composite networks arising as a tensor product, Graphs and Combinatorics 25 (2009), 273-290. (With Y. Diao and K. Hinson.)
[4] Relative Tutte Polynomials for Colored Graphs and Virtual Knot Theory, Combinatorics, Probability \& Computing, 19 (2010), 343-369. (With Y. Diao.)

