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A Fibonacci-type sequence a0, a1, . . . is given by a recurrence

an+2 + ban+1 + can = 0 (1)

and by the initial values for a0 and a1. For example, for the Fibonacci numbers we have b = c = −1

and a0 = a1 = 1. We want to find a closed formula for such a sequence.

The key idea is to find two geometric sequences 1, q1, q
2
1, . . . and 1, q2, q

2
2, . . ., satisfying the recur-

rence (1) and to express the sequence a0, a1, . . . as a linear combination of these geometric sequences.

That is, we want to find numbers α and β satisfying

an = αqn1 + βqn2 for all n ≥ 0. (2)

A geometric sequence 1, q, q2, . . . satisfies the recurrence (1) exactly when the number q is a solution

of the characteristic equation

q2 + aq + b = 0.

We may use our key idea without any modification when the characteristic equation has two distinct

roots. (Note that these roots may be complex!) The exceptional case when the characteristic equation

has a double root, will be handled afterward. Once we have found the roots q1 and q2, we may find

the coefficients α and β in (2) by substituting n = 0 and n = 1, respectively, and solving the resulting

system of linear equations
a0 = α+ β
a1 = αq1 + βq2

}
(3)

This has a unique solution for α and β, since the determinant of the coefficient matrix is

det

(
1 1
q1 q2

)
= q2 − q1 6= 0.

For example, for the Fibonacci numbers, we obtain the characteristic equation

q2 − q − 1 = 0

whose solution is

q1 =
1 +
√

5

2
and q2 =

1−
√

5

2
.

1



The system of equations (3) takes the form

1 = α+ β

1 = α
1 +
√

5

2
+ β

1−
√

5

2


whose solution is α =

1√
5
· 1 +

√
5

2
and β =

1√
5
·
√

5− 1

2
. Thus we obtain

an =
1√
5
· 1 +

√
5

2
·

(
1 +
√

5

2

)n

+
1√
5
·
√

5− 1

2
·

(
1−
√

5

2

)n

,

which may be simplified to

an =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 .

In the exceptional case when the characteristic equation has a double root q1, the same q1 is a double

root of the polynomial qn+3 + aqn+2 + bqn+1 for each n ≥ 0. Thus q1 is still a root of the derivative

(n + 3)qn+2 + (n + 2)aqn+1 + (n + 1)bqn. In other words, the sequence 1, 2q1, 3q
2
1, . . . , (n + 1)qn1 , . . .

also satisfies the same recurrence. From this we may subtract the geometric sequence 1, q1, q
2
1, . . . and

obtain that the sequence 0, q1, 2q
2
1, . . . , nq

n
1 , . . . satisfies the same recurrence. Thus we may look for

the solution in the form

an = αqn1 + βnqn1 for all n ≥ 0. (4)

instead of (2). Substituting n = 0 and n = 1 into this equation yields the system of equations

a0 = α
a1 = (α+ β)q1

}
(5)

which has the unique solution α = a0 and β = a1q
−1
1 − a0, whenever q1 6= 0. Finally the case when

q1 = 0 is a double root, the characteristic equation is q2 = 0 and we have an+2 = 0 for n ≥ 0.

An example for the double root situation would be an+2−6an+1+9an = 0 where the characteristic

equation is q2 − 6q + 9 = 0, with double root q1 = 3. Assuming a0 = 0 and a1 = 1, after solving (5)

we get α = 0 and β = 3−1. Thus an = 0 + 3−1n3n = n3n−1 for n ≥ 0.
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