Inclusion-exclusion formulas

Let A_1, A_2, \ldots , and A_n be subsets of the same finite set X. The *inclusion-exclusion formulas* allow us to count the elements in the union $\bigcup_{i=1}^{n} A_i$ and in its complement.

Theorem 1 We have

$$\left| X \setminus \bigcup_{i=1}^{n} A_{i} \right| = |X| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |A_{1} \cap A_{2} \cap \dots A_{n}|, \quad that is,$$
$$\left| X \setminus \bigcup_{i=1}^{n} A_{i} \right| = \sum_{r=0}^{n} (-1)^{r} \sum_{1 \le i_{1} < i_{2} < \dots < i_{r} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots A_{i_{r}}|.$$

Proof: Let x be any element of X. Assume x belongs to exactly j sets from A_1, \ldots, A_n . (Here j is any integer between 0 and n.) Without loss of generality we may assume that x belongs to A_1, A_2, \ldots, A_j , but does not belong to $A_{j+1}, A_{j+2}, \ldots, A_n$. This element is counted zero times on the left hand side if j > 0, and it is counted once if j = 0. It suffices to show that x is counted the same number of times on the right hand side. Clearly x belongs to the intersection $A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_r}$ if and only if the index set $\{i_1, \ldots, i_r\}$ is a subset of $\{1, 2, \ldots, j\}$, and there are $\binom{j}{r}$ such subsets. Thus x is counted with multiplicity $\sum_{r=0}^{j} (-1)^r \binom{j}{r}$ on the right hand side. By the binomial theorem, we have

$$\sum_{r=0}^{j} (-1)^r \binom{j}{r} = (1-1)^j = \delta_{0,j}$$

where $\delta_{0,j}$ is the Kronecker delta. Therefore x is counted the same number of times on both sides. \Diamond

Subtracting both sides of the equation stated in the Theorem above from |X|, we obtain an important variant of the inclusion-exclusion formula:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots + (-1)^{n-1} |A_{1} \cap A_{2} \cap \dots A_{n}|, \text{ that is,}$$
$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{r=1}^{n} (-1)^{r-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{r} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots A_{i_{r}}|.$$