The twelvefold way

Putting k balls into n boxes.

Domain	Target	All	1-1	Onto
(size k)	(size n)		(injective)	(surjective)
		May receive 0	Each receives ≤ 1	Each receives ≥ 1
dist.	dist.	n^k	$(n)_k$	n!S(k,n)
id.	dist.	$\left(\begin{pmatrix} n \\ k \end{pmatrix} \right)$	$\binom{n}{k}$	$\left(\begin{pmatrix} n \\ k-n \end{pmatrix} \right)$
dist.	id.	$S(k,1) + \dots + S(k,n)$	$\delta_{k \leq n}$	S(k,n)
id.	id.	$P(k,1) + \dots + P(k,n)$	$\delta_{k \leq n}$	P(k,n)

Explanation:

 $(n)_k = n \cdot (n-1) \cdots (n-k+1)$ is a falling factorial.

 $\binom{n}{k}$ is a binomial coefficient (the number of k-element subsets of an n-element set).

 $\binom{n}{k} = \binom{n+k-1}{k}$ is the number of k-element multisets chosen from an n-element set.

- S(k, n) is the number of ways to partition a k-element set into n classes or parts. (A Stirling number of the second kind).
- P(k, n) is the number of partitions of the integer k into n parts.

 $\delta_{k \leq n}$ is 1 if $k \leq n$ and zero otherwise.

Note: When $k \leq n$, the sum $S(k, 1) + \cdots + S(k, n)$ is known as the Bell number B_k . (Obviously $S(k, k+1) = S(k, k+2) = \cdots = S(k, n) = 0$).