Sines and cosines in the Poincaré disk model of the hyperbolic plane

Theorem 1 Assume that $A B C_{\triangle}$ is a right triangle, with its right angle at C, in the hyperbolic plane represented by the Poincaré disk model. Then

$$
\sin (B)=\frac{\sinh (b)}{\sinh (c)} \quad \text { and } \quad \cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

Proof: Without loss of generality we may assume that A is at the center of the Poincaré disk.

The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of circle C_{1} centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.

Since the Poincaré disk and the circle C_{1} are orthogonal to each other, the power of $A=O$ with respect to C_{1} is 1 (=the radius of the Poincaré disk). Hence the Euclidean distance $O B$ satisfies $O B \cdot O B^{\prime}=1$. We also know that the Euclidean distance $O B$ equals $\tanh (c / 2)$. Thus

$$
\begin{aligned}
B B^{\prime} & =O B^{\prime}-O B=1 / O B-O B=1 / \tanh (c / 2)-\tanh (c / 2)=\frac{\cosh (c / 2)}{\sinh (c / 2)}-\frac{\sinh (c / 2)}{\cosh (c / 2)} \\
& =\frac{\cosh ^{2}(c / 2)-\sinh ^{2}(c / 2)}{\sinh (c / 2) \cdot \cosh (c / 2)}=\frac{2}{2 \cdot \sinh (c / 2) \cdot \cosh (c / 2)}=\frac{2}{\sinh (c)}
\end{aligned}
$$

Similarly, since the Euclidean distance $O C$ equals $\tanh (b / 2)$, we get $C C^{\prime}=2 / \sinh (b)$. The angle of $A B C_{\triangle}$ at B is the angle between the tangent of C_{1} at B and the line $O B$. Due to the Star Trek Lemma, this is the half of the central angle $\angle B O_{1} B^{\prime}$, which is equal to $\angle B O_{1} B_{1}$. Hence $\sin (B)$ may be calculated from the right triangle $O_{1} B_{1} B_{\triangle}$, and we get

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)} .
$$

We may calculate $\cos (A)$ using $\cos (A)=A B_{1} / A O_{1}$. Here

$$
\begin{aligned}
A B_{1} & =O B+B B^{\prime} / 2=\tanh (c / 2)+1 / \sinh (c)=\frac{\sinh (c / 2)}{\cosh (c / 2)}+\frac{1}{2 \sinh (c / 2) \cosh (c / 2)} \\
& =\frac{2 \sinh ^{2}(c / 2)+1}{2 \sinh (c / 2) \cosh (c / 2)}=\frac{2 \sinh ^{2}(c / 2)+\cosh ^{2}(c / 2)-\sinh ^{2}(c / 2)}{\sinh (c)}=\frac{\cosh ^{2}(c / 2)+\sinh ^{2}(c / 2)}{\sinh (c)} \\
& =\frac{\cosh (c)}{\sinh (c)}=\frac{1}{\tanh (c)} .
\end{aligned}
$$

Similarly, $A O_{1}=A C+C C^{\prime} / 2$ yields $A O_{1}=1 / \tanh (c)$ and so we obtain

$$
\cos (A)=A B_{1} / A O_{1}=\frac{\tanh (b)}{\tanh (c)}
$$

In analogy to the formulas for $\sin (B)$ and $\cos (A)$ we also have

$$
\sin (A)=\frac{\sinh (a)}{\sinh (c)} \quad \text { and } \quad \cos (B)=\frac{\tanh (a)}{\tanh (c)} .
$$

Since $1=\sin ^{2}(A)+\cos ^{2}(A)$, we get

$$
1=\frac{\sinh ^{2}(a)}{\sinh ^{2}(c)}+\frac{\tanh ^{2}(b)}{\tanh ^{2}(c)}=\frac{\sinh ^{2}(a)+\tanh ^{2}(b) \cdot \cosh ^{2}(c)}{\sinh ^{2}(c)}=\frac{\sinh ^{2}(a) \cosh ^{2}(b)+\sinh ^{2}(b) \cdot \cosh ^{2}(c)}{\cosh ^{2}(b) \sinh ^{2}(c)} .
$$

Multiplying both sides with $\cosh ^{2}(b) \sinh ^{2}(c)$ we get

$$
\cosh ^{2}(b) \sinh ^{2}(c)=\sinh ^{2}(a) \cosh ^{2}(b)+\sinh ^{2}(b) \cdot \cosh ^{2}(c) .
$$

Using the identity $\sinh ^{2}(x)=\cosh ^{2}(x)-1$ we may get rid of the hyperbolic sines and write

$$
\begin{gathered}
\cosh ^{2}(b)\left(\cosh ^{2}(c)-1\right)=\left(\cosh ^{2}(a)-1\right) \cosh ^{2}(b)+\left(\cosh ^{2}(b)-1\right) \cdot \cosh ^{2}(c), \quad \text { i.e., } \\
\cosh ^{2}(b) \cosh ^{2}(c)-\cosh ^{2}(b)=\cosh ^{2}(a) \cosh ^{2}(b)-\cosh ^{2}(b)+\cosh ^{2}(b) \cosh ^{2}(c)-\cosh ^{2}(c) .
\end{gathered}
$$

Adding $\cosh ^{2}(b)+\cosh ^{2}(c)-\cosh ^{2}(b) \cosh ^{2}(c)$ yields

$$
\cosh ^{2}(c)=\cosh ^{2}(a) \cosh ^{2}(b)
$$

Since the range of the hyperbolic cosine function is a subset of the positive real numbers, we may take the square root on both sides and get the hyperbolic Pythagorean theorem:

Theorem 2 If a, b, c are the sides of a hyperbolic right triangle, c is the hypotenuse and the hyperbolic plane is the Poincaré disk model then

$$
\cosh (c)=\cosh (a) \cosh (b)
$$

