The hyperbolic Pythagorean theorem

To prove some formulas of hyperbolic trigonometry, we begin with the following.

Proposition 1 Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)} \quad \text { and } \quad \sin (B)=\frac{\sinh (b)}{\sinh (c)}
$$

Proof: It is your homework to fill in the details in the following proof.

Use the Poincare disc model and assume that the vertex A is at the center of the disk. (The right angle of $A B C_{\Delta}$ is at C.) The lines $A B$ and $A C$ are represented by straight lines, the line $B C$ is represented by an arc of a circle centered at O_{1}. Let B^{\prime} resp. C^{\prime} be the second intersection of $O B$ resp $O C$ with this circle and B_{1} be the orthogonal projection of O to the line $O B$.

Using that the Euclidean distance $O B$ equals $\tanh (c / 2)$ and that $O B \cdot O B^{\prime}=1$ (justify why), prove that the Euclidean distance $B B^{\prime}=2 / \sinh (c)$. Observe that the Euclidean distance $C C^{\prime}$ is similarly equal to $2 / \sinh (b)$. Due to the Star Trek Lemma, the angle $\angle B O_{1} B_{1}$ is equal to $\angle B$. (Why?) Hence

$$
\sin (B)=\frac{B B_{1}}{O_{1} B}=\frac{B B^{\prime}}{2 O_{1} C}=\frac{B B^{\prime}}{C C^{\prime}}=\frac{\sinh (b)}{\sinh (c)}
$$

Finally, using that $\cos (A)=A B_{1} / A O_{1}$, where $A B_{1}=O B+B B^{\prime} / 2$ and $A O_{1}=A C+C C^{\prime} / 2$, prove that

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)}
$$

The hyperbolic Pythagorean theorem is the following statement.

Proposition 2 Any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies $\cosh (c)=\cosh (a) \cosh (b)$.

Proof: As seen in the previous statement, we have

$$
\cos (A)=\frac{\tanh (b)}{\tanh (c)} \quad \text { and } \quad \sin (A)=\frac{\sinh (a)}{\sinh (c)}
$$

Using $\cos ^{2}(A)+\sin ^{2}(A)=1$ we get

$$
1=\frac{\tanh ^{2}(b)}{\tanh ^{2}(c)}+\frac{\sinh ^{2}(a)}{\sinh ^{2}(c)}=\frac{\tanh ^{2}(b) \cosh ^{2}(c)+\sinh ^{2}(a)}{\sinh ^{2}(c)}
$$

Multiplying both sides by $\sinh ^{2}(c) \cosh ^{2}(b)=\left(\cosh ^{2}(c)-1\right) \cosh ^{2}(b)$ we get

$$
\left(\cosh ^{2}(c)-1\right) \cosh ^{2}(b)=\sinh ^{2}(b) \cosh ^{2}(c)+\sinh ^{2}(a) \cosh ^{2}(b) .
$$

Replacing $\sinh ^{2}(b)$ with $\cosh ^{2}(b)-1$ and $\sinh ^{2}(a)$ with $\cosh ^{2}(a)-1$ yields

$$
\begin{gathered}
\left(\cosh ^{2}(c)-1\right) \cosh ^{2}(b)=\left(\cosh ^{2}(b)-1\right) \cosh ^{2}(c)+\left(\cosh ^{2}(a)-1\right) \cosh ^{2}(b), \quad \text { that is } \\
\cosh ^{2}(c) \cosh ^{2}(b)-\cosh ^{2}(b)=\cosh ^{2}(b) \cosh ^{2}(c)-\cosh ^{2}(c)+\cosh ^{2}(a) \cosh ^{2}(b)-\cosh ^{2}(b)
\end{gathered}
$$

After simplifying and rearranging we obtain

$$
\cosh ^{2}(c)=\cosh ^{2}(a) \cosh ^{2}(b) .
$$

The statement follows from the fact that $\cosh (x) \geq 0$ holds for all real number x.

Proposition 3 The previous two statements also imply the following equalities:

$$
\begin{gather*}
\frac{\cos (A)}{\sin (B)}=\cosh (a) \quad \text { and } \tag{1}\\
\cot (A) \cot (B)=\cosh (a) \cosh (b) \tag{2}
\end{gather*}
$$

Proof: Equation (1) Taking the quotient of the the two equations in Proposition 1 we get

$$
\frac{\cos (A)}{\sin (B)}=\frac{\tanh (b)}{\tanh (c)} \cdot \frac{\sinh (c)}{\sinh (b)}=\frac{\cosh (c)}{\cosh (b)} .
$$

By Proposition 2 we may replace $\cosh (c)$ with $\cosh (a) \cosh (b)$ in the previous equation. Simplifying by $\cosh (b)$ yields (1). In a completely analogous fashion, we also have

$$
\begin{equation*}
\frac{\cos (B)}{\sin (A)}=\cosh (b) \tag{3}
\end{equation*}
$$

Multiplying (1) with (3)yields (2).

