Fractional linear transformations

Definition $1 A$ fractional linear transformation is a function of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

from the set $\mathbb{C} \cup\{\infty\}$ of extended complex numbers into itself. Here a, b, c, d are complex numbers satisfying $a d-b c \neq 0, \infty$ is sent into a / c and $-d / c$ is sent into ∞.

Proposition 1 A fractional linear transformation has an inverse which is also a fractional linear transformation.

Proposition 2 The composition of two fractional linear transformations is a fractional linear transformation.

Theorem 1 Every fractional linear transformation may be written as a composition of dilations, rotations, reflections, inversions, and translations.

Proof: Assume the fractional linear is given by

$$
z \mapsto \frac{a z+b}{c z+d},
$$

and consider first the case when $c=0$. Then we must have $d \neq 0$ since $a d-b c \neq 0$. Thus

$$
\frac{a z+b}{c z+d}=\frac{a}{d} z+\frac{b}{d} .
$$

which may be written a composition of the map $z \mapsto a / d \cdot z$ and the translation $z \mapsto z+b / d$. The $\operatorname{map} z \mapsto a / d \cdot z$ is a rotation, composed with a dilation.

From now on we may assume $c \neq 0$. Then

$$
\frac{a z+b}{c z+d}=\frac{\frac{a}{c}(c z+d)}{c z+d}+\frac{b-\frac{a d}{c}}{c z+d}=\frac{a}{c}+\frac{b c-a d}{c} \cdot \frac{1}{c z+d} .
$$

The statement now follows from the following sequence of observations: $z \mapsto c z$ is a dilation composed with a rotation, $z \mapsto z+d$ is a translation, $z \mapsto 1 / z$ is an inversion composed with a reflection, $z \mapsto(b c-a d) / c \cdot z$ is a dilation composed with a rotation, and $z \mapsto a / c+z$ is a translation.

Corollary 1 Fractional linear transformations take lines and circles into lines and circles. They preserve angles and the cross-ratio.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.

