Assignment 12

Oral question

1. All hyperbolic rotations fixing the point *i* in the Poincaré upper half plane model are fractional linear transformations $z \mapsto \frac{az+b}{cz+d}$ sending *i* into *i*. Using this fact, and assuming that we have scaled our coefficients to satisfy ad-bc = 1, show that

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}\cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right)$$

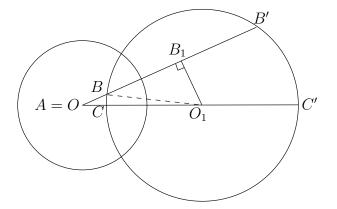
for some angle θ .

2. Consider the fractional linear transformation $z \mapsto \frac{az+b}{cz+d}$ where $a, b, c, d \in \mathbb{R}$ and $ad-bc \neq 0$. Introduce $z = z_1 + z_2 i$ and calculate explicitly the imaginary part of $\frac{az+b}{cz+d}$. Prove that the imaginary part of the image is positive for all $z_2 > 0$ if and only if ad - bc > 0.

Now show that a conjugate fractional linear map $z \mapsto \frac{a\overline{z}+b}{c\overline{z}+d}$ takes the upper half plane into itself if and only if ad - bc < 0.

Question to be answered in writing

1. Complete the following proof of the *hyperbolic Pythagorean theorem* which states the following: Any right triangle $\triangle ABC$ with $\angle C$ being the right angle satisfies $\cos(A) = \tanh(b)/\tanh(c)$.



Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right angle of ABC_{\triangle} is at C.) The lines AB and AC are represented by straight lines, the line BC is represented by an arc of a circle centered at O_1 . Let B' resp. C' be the second intersection of OB resp OC with this circle and B_1 be the orthogonal projection of O to the line OB.

Using that the Euclidean distance OB equals tanh(c/2) and that $OB \cdot OB' = 1$ (justify why), prove that the Euclidean distance $BB' = 2/\sinh(c)$. Observe that the Euclidean distance CC' is similarly equal to $2/\sinh(b)$. Due to the Star Trek Lemma, the angle $\angle BO_1B_1$ is equal to $\angle B$. (Why?) Hence

$$\sin(B) = \frac{BB_1}{O_1B} = \frac{BB'}{2O_1C} = \frac{BB'}{CC'} = \frac{\sinh(b)}{\sinh(c)}$$

Finally, using that $\cos(A) = AB_1/AO_1$, where $AB_1 = OB + BB'/2$ and $AO_1 = AC + CC'/2$, prove that

 $\cos(A) = \frac{\tanh(b)}{\tanh(c)}.$