
Connecting the two Poincaré models

The domain of the fractional linear transformation φ : z 7→ z − i
1− iz

is C\{−i}. It may be rewritten
as

z − i
1− iz

=
i(1− iz)

1− iz
+
−2i

1− iz
= i+

−2i

1− iz
.

This equivalent form shows that φ may be written as the composition φ = φ7φ6φ5φ4φ3φ2φ1, where

1. φ1 : z 7→ −iz is the rotation around the origin by −π/2 (thus φ1(z) = −iz);
2. φ2 : z 7→ z + 1 is the horizontal translation to the right by 1 (thus φ2φ1(z) = 1− iz);
3. φ3 : z 7→ 1/z the inversion about the unit circle, centered at the origin, (thus φ3φ2φ1(z) =

1/(1− iz));
4. φ4 : z 7→ z is the reflection about the real axis (thus φ4 · · ·φ1(z) = 1/(1− iz));
5. φ5 : z 7→ −iz is the rotation around the origin by −π/2 (thus φ5 · · ·φ1(z) = −i/(1− iz));
6. φ6 : z 7→ 2z is the dilation centered at the origin by a factor of 2 (thus φ6 · · ·φ1(z) = −2i/(1−iz));
7. φ7 : z 7→ z + i is the vertical translation up by 1 (thus φ7 · · ·φ1(z) = φ(z));

Theorem 1 The map φ : z 7→ z − i
1− iz

, restricted to the upper half plane formed by all complex numbers

whose imaginary part is non-negative, establishes a bijection between this half plane and the closed unit
disk, centered at the origin.

Proof: Let us analyze the sequence of maps φ1,. . . ,φ7 described above. These maps are all injective,
therefore it suffices to describe the surjective image of the upper half plane after applying φj · · ·φ1,
for each j ∈ {1, . . . , 7}.

1. φ1 takes the set of complex numbers whose imaginary part is non-negative into the set of complex
numbers whose real part is non-negative.

2. φ2 takes this half plane into the set of complex numbers whose real part is at least 1.
3. φ3 takes the half plane on the previous line into the disk of radius 1/2, centered at 1/2.
4. φ4 takes the disk of radius 1/2, centered at 1/2, into itself.
5. φ5 takes of radius 1/2, centered at 1/2, into the disk of radius 1/2, centered at −i/2.
6. φ6 takes the disk of radius 1/2, centered at −i/2, into the unit disk, centered at −i.
7. φ7 takes the unit disk, centered at −i, into the unit disk, centered at the origin.

♦

Since φ is a composition of transformations that take lines and circles into lines and circles, preserving
angles and the cross ratio, we may use φ−1 to “export” the geometry of the Poincaré disk model to
the upper half plane, thus obtaining the Poincaré upper half plane model:

1. The set of ideal points on the unit circle in the Poincaré disk model corresponds to the real line
in the upper half plane model.
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2. Since lines in the Poincaré disk model were defined as parts of lines and circles inside the unit
disk that are perpendicular to the unit circle, lines in the upper half plane model are parts of
lines and circles in the upper half plane that are perpendicular to the real line. These are exactly
the vertical, upwards infinite half-lines and concave-down semicircles whose endpoint(s) is (are)
on the real line.

3. Angles are the angles of the “lines” (defined as the angles of their tangents at the intersection)
in either models.

4. The distance if A and B in the Poincaré disk model was defined as ln(A,B, P,Q) where P and
Q are the ideal points of the line connecting A and B. Since φ−1 preserves cross-ratio, we may
define distance in the upper half plane model in the same way. In the case when A and B are not
on the same vertical line, P and Q are the endpoints of the semicircle connecting them, located
on the real line. In the case when A and B are on the same vertical line, P is the intersection
of this vertical line with the real line, and Q is the point at infinity. The sensed ratio (A,B,Q)
is −1 so the cross ratio (A,B, P,Q) is the negative of the sensed ratio (A,B, P ), i.e. AP/BP .
The distance of A and B is ln(AP/PB).
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