
The hyperbolic Pythagorean theorem

The hyperbolic Pythagorean theorem is the following statement.

Proposition 1 Any right triangle4ABC with ∠C being the right angle satisfies cosh(c) = cosh(a) cosh(b).

Proof: See [1, page 178]. ♦

To prove the rest of the formulas of hyperbolic trigonometry, we need to show the following.

Proposition 2 Any right triangle4ABC with ∠C being the right angle satisfies cos(A) = tanh(b)/ tanh(c).

Proof: It is your homework to fill in the details in the following proof.
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Use the Poincaré disc model and assume that the vertex A is at the center of the disk. (The right
angle of ABC4 is at C.) The lines AB and AC are represented by straight lines, the line BC is
represented by an arc of a circle centered at O1. Let B′ resp. C ′ be the second intersection of OB
resp OC with this circle and B1 be the orthogonal projection of O to the line OB.

Using that the Euclidean distance OB equals tanh(c/2) and that OB ·OB′ = 1 (justify why), prove
that the Euclidean distance BB′ = 2/ sinh(c). Observe that the Euclidean distance CC ′ is similarly
equal to 2/ sinh(b). Due to the Star Trek Lemma, the angle ∠BO1B1 is equal to ∠B. (Why?) Hence

sin(B) =
BB1

O1B
=

BB′

2O1C
=

BB′

CC ′ =
sinh(b)

sinh(c)
.

Finally, using that cos(A) = AB1/AO1, where AB1 = OB + BB′/2 and AO1 = AC + CC ′/2, prove
that

cos(A) =
tanh(b)

tanh(c)
.

♦
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Proposition 3 The previous two statements also imply the following equalities:

sin(A) =
sinh(a)

sinh(c)
, (1)

cos(A)

sin(B)
= cosh(a) and (2)

cot(A) cot(B) = cosh(a) cosh(b) (3)

Proof: Before proving equation (1), note that this equation was actually shown during the proof of
Proposition 2 (for B whose role is exchangeable with the role of A). That said, here we show that it
follows algebraically from the previous two propositions. By Proposition 2 we have

sin2(A) = 1− cos2(A) =
tanh2(c)− tanh2(b)

tanh2(c)
.

Using the fact that tanh(x) = sinh(x)/ cosh(x), the above equation may be rewritten as

sin2(A) =
sinh2(c) cosh2(b)− cosh2(c) sinh2(b)

sinh2(c) cosh2(b)
.

Replacing each sinh2(x) with cosh2(x)− 1 in the numerator we get

sin2(A) =
(cosh2(c)− 1) cosh2(b)− cosh2(c)(cosh2(b)− 1)

sinh2(c) cosh2(b)
=

cosh2(c)− cosh2(b)

sinh2(c) cosh2(b)
.

By Proposition 1 we may replace cosh2(c) with cosh2(a) cosh2(b) and get

sin2(A) =
cosh2(a) cosh2(b)− cosh2(b)

sinh2(c) cosh2(b)
=

cosh2(a)− 1

sinh2(c)
=

sinh2(a)

sinh2(c)
.

Since A is an acute angle, sin(A) is positive and we may take the square root on both sides to obtain
equation (1). Combining equation (1) with Proposition 2 yields

cos(A)

sin(B)
=

tanh(b)

tanh(c)
· sinh(c)

sinh(b)
=

cosh(c)

cosh(b)
.

By Proposition 1 we may replace cosh(c) with cosh(a) cosh(b) and get

cos(A)

sin(B)
=

cosh(a) cosh(b)

cosh(b)
.

Equation (2) follows after simplifying by cosh(b). Finally, using equation (2) for cos(A)/ sin(B) and
for cos(B)/ sin(A) yields

cot(A) cot(B) =
cos(A)

sin(B)
· cos(B)

sin(A)
= cosh(a) cosh(b).

♦
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