Fractional linear transformations

Definition 1 A fractional linear transformation is a function of the form

$$z \mapsto \frac{az+b}{cz+d}$$

from the set $\mathbb{C} \cup \{\infty\}$ of extended complex numbers into itself. Here a, b, c, d are complex numbers satisfying $ad - bc \neq 0$, ∞ is sent into a/c and -d/c is sent into ∞ .

Proposition 1 A fractional linear transformation has an inverse which is also a fractional linear transformation.

Proposition 2 The composition of two fractional linear transformations is a fractional linear transformation.

Theorem 1 Every fractional linear transformation may be written as a composition of dilations, rotations, reflections, inversions, and translations.

Proof: Assume the fractional linear is given by

$$z \mapsto \frac{az+b}{cz+d}$$
,

and consider first the case when c=0. Then we must have $d\neq 0$ since $ad-bc\neq 0$. Thus

$$\frac{az+b}{cz+d} = \frac{a}{d}z + \frac{b}{d}.$$

which may be written a composition of the map $z \mapsto a/d \cdot z$ and the translation $z \mapsto b/d$. The map $z \mapsto a/d \cdot z$ is a rotation, composed with a dilation.

From now on we may assume $c \neq 0$. Then

$$\frac{az+b}{cz+d} = \frac{\frac{a}{c}(cz+d)}{cz+d} + \frac{b-\frac{ad}{c}}{cz+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cz+d}.$$

The statement now follows from the following sequence of observations: $z \mapsto cz$ is a dilation composed with a rotation, $z \mapsto z + d$ is a translation, $z \mapsto 1/z$ is an inversion composed with a reflection, $z \mapsto (bc - ad)/c \cdot z$ is a dilation composed with a rotation, and $z \mapsto a/c + z$ is a translation. \Diamond

Corollary 1 Fractional linear transformations take lines and circles into lines and circles. They preserve angles and the cross-ratio.

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, December 11, 2011.