Assignment 10

Oral questions

1. Assume $a, b, c \in \mathbb{R}$ satisfy $a^{2}+b c=1$, and let $T: \mathbb{C} \rightarrow \mathbb{C}$ be given by

$$
T(z)=\frac{a \bar{z}+b}{c \bar{z}-a}
$$

Show that $T(T(z))=z$ for all z. (All reflections of the Poincaré upper half plane model are represented by such a function.)
2. All hyperbolic rotations fixing the point i in the Poincaré upper half plane model are fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ sending i into i. Using this fact, and assuming that we have scaled our coefficients to satisfy $a d-b c=1$, show that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

for some angle θ.

Question to be answered in writing

1. Find the Poincaré distance between the points $P=3+i$ and $Q=(6+\sqrt{2}) / 2+\sqrt{2} / 2 \cdot i$ (in the Poincaré upper half plane model).
