Assignment 8

Oral questions

1. Prove that the distance function $d(A, B)=|\log (A B, P Q)|$ of the Poincaré disk model is additive: if $A * C * B$ on a Poincaré line then $d(A C)+d(C B)=d(A B)$. Fix a Poincaré line with ideal points P and Q and a point A on it. Move another point B along the Poincaré line from P to Q. Show that $d(A, B)$ changes from ∞ to 0 and then back to ∞.
2. Schweikart's constant is the distance d for which the angle of parallelism is $\Pi(d)=45^{\circ}$. Prove that for the length function of the Poincaré disk model, Schweikart's constant equals $\log (1+\sqrt{2})$. Do not use Lobachevski's Theorem (Theorem 9.16) but the formula given in Theorem 9.13, and the picture below. (Explain why d is the length of the line segment $O P$.)

Question to be answered in writing

1. Let a, b, c, d be real numbers, such that $a c-b d \neq 0$. Using that

$$
\frac{a z+b}{c z+d}= \begin{cases}\frac{a}{c}+\frac{b-a d / c}{c z+d} & \text { if } c \neq 0, \text { and } \\ \frac{a z+b}{d} & \text { if } c=0\end{cases}
$$

show that every fractional linear transformation of the above form arises as a combination of horizontal translations $z \mapsto z+b$, dilations $z \mapsto a z$ and "reflected inversions" $z \mapsto 1 / z$. Conclude that fractional linear transformations preserve angles and the cross-ratio.

