Assignment 7

Oral questions

- 1. Which of the following must always exist even in hyperbolic geometry: the incircle or the circumcircle? (Think of the crossbar theorem and of the possibility of hyperparallel lines being perpendicular bisectors.)
- 2. Use the additivity of defect to show that all triangles can not have the same positive defect. Is there an upper bound on the defect of a triangle? Compare this to the upper bound on the defect of a quadrilateral.
- 3. (Euclidean geometry.) Let O be the center of the circle of inversion, P' the inverse of P and Q' the inverse of Q. Assume that O, P, and Q form a triangle. Show that OPQ_{\triangle} is similar to $OQ'P'_{\triangle}$. Use this result to show that inversion preserves the cross-ratio: if A, B, P, and Q are four points distinct from the center O of the circle of inversion and A', B', P', and Q' are their inverses then (AB, PQ) = (A'B', P'Q').

Question to be answered in writing

1. Let ℓ be the perpendicular bisector of the side AB in the triangle $\triangle ABC$. Let A_1 be the midpoint of the side BC. Let m be the line through A_1 that is perpendicular to ℓ . Show that m contains the midpoint of AC. (Hint: let B_1 be the intersection of the line m with AC. Reflect B_1 about the line ℓ , get B'_1 , and reflect B'_1 about the point A_1 to get B''_1 . Show that the length of AB_1 is the same as the length of CB''_1 and then show that $\triangle B_1CB''_1$ is isoceles.) This is a question about neutral geometry. You should not assume Euclid's fifth postulate in your proof.