Assignment 6

Oral questions

1. Review the proof of Thales' theorem and point out the instance(s) where we use Euclid's fifth postulate, or an equivalent statement. Assume then that Thales' theorem is true. Explain why this implies the existence of a triangle with zero defect.
2. Let O be the center of a circle and A and B two points on the circle. Let M be the midpoint of the line segment $A B$. Prove in neutral geometry that the line $O M$ is perpendicular to $A B$. (Hint: Corresponding angles of congruent triangles are congruent.)
3. Given $A * B * C$ on a line and a point D not on the line such that $D C \perp A C$. Prove that $A D>B D>C D$. (Use Lemma 7.9 from our notes.)

Question to be answered in writing

1. Let $A B D C$ be a quadrilateral whose base angles $\angle A$ and $\angle B$ are right angles. Prove that if $A C<B D$ then $\angle D<\angle C$. (Hint: Choose E between B and D on the line $B D$ such that $A C=B E$. Apply Theorem 8.3 (i) and the weak exterior angle theorem. You are allowed to use without proof the fact that E is interior to $\angle A C D$.)
2. Assume that the lines ℓ and ℓ^{\prime} have a common perpendicular line segment $M M^{\prime}$. Prove that $M M^{\prime}$ is the shortest segment between any point of ℓ and any point of ℓ^{\prime}. (Hint: Assume $A \in \ell, A^{\prime} \in \ell^{\prime}$ and compare $A A^{\prime}$ to $M M^{\prime}$. Use the previous written exercise when $A A^{\prime}$ is perpendicular to ℓ and then use the third oral exercise in the other case.)
