Assignment 4

Oral questions

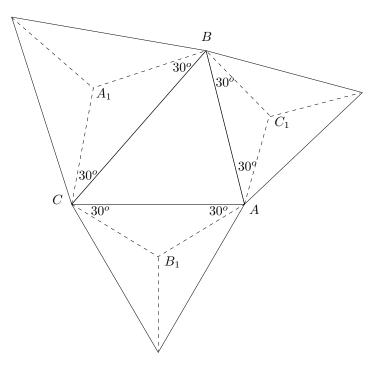
- 1. Prove the following converse of the Star Trek Lemma: given a circle centered at O, and three points A, B, and C such that
 - (i) B and C are on the circle,
 - (ii) The angle $\angle BAC$ is the half of $\angle BOC$,

the angle A is also on the circle. (I ask you to work out only the case when $\angle BAC$ is acute and O lies in its interior, keeping in mind that there are also other cases, see the first written question. It might help if you consider, how $\angle BAC$ changes when you move the point A on a line containing O, towards O or away from it.)

- 2. Prove that a quadrilateral is cyclic if and only if the sum of two of its opposite angles is 180°. Explain which implication is related to the Star Trek Lemma, and which to its converse.
- 3. Let a, b, and c be the sides of a triangle, and A its area. Prove that the excircle at side a has radius 2A/(-a+b+c).

Questions to be answered in writing

- 1. Use Ceva's theorem to prove that the orthocenter exists.
- 2. Prove Napoleon's theorem: Given an arbitrary triangle ABC_{Δ} , the centers of the equilateral triangles exterior to ABC_{Δ} form an equilateral triangle. (Illustration and hints on next page.)



Hints: Represent the points A, B, C, A_1, B_1, C_1 with complex numbers a, b, c, a_1, b_1, c_1 . Observe that multiplying with

$$\rho := \frac{1}{\sqrt{3}} \left(\cos(30^{\circ}) + i \cdot \sin(30^{\circ}) \right)$$

rotates the vector $\overrightarrow{BA} = a - b$ into $\overrightarrow{BC_1} = c_1 - b$. Use this observation to express c_1 in terms of a, b and ρ . Express then a_1 and c_1 similarly in terms of a, b, c and ρ . Show that $c_1 - a_1$ is obtained by multiplying $b_1 - a_1$ with

$$\frac{\rho}{1-\rho} = \frac{2\rho-1}{\rho} = \frac{\rho-1}{2\rho-1}.$$

It is probably easier to do so if you find the quadratic equation whose roots are ρ and its conjugate. Finally show that

$$\frac{\rho}{1-\rho} = \cos(60^\circ) + i \cdot \sin(60^\circ)$$

meaning that $\overrightarrow{A_1C_1}$ is obtained from $\overrightarrow{A_1B_1}$ by a 60° rotation.