Assignment 4

Oral questions

1. Prove the following converse of the Star Trek Lemma: given a circle centered at O, and three points A, B, and C such that
(i) B and C are on the circle,
(ii) The angle $\angle B A C$ is the half of $\angle B O C$,
the angle A is also on the circle. (I ask you to work out only the case when $\angle B A C$ is acute and O lies in its interior, keeping in mind that there are also other cases, see the first written question. It might help if you consider, how $\angle B A C$ changes when you move the point A on a line containing O, towards O or away from it.)
2. Prove that a quadrilateral is cyclic if and only if the sum of two of its opposite angles is 180°. Explain which implication is related to the Star Trek Lemma, and which to its converse.
3. Let a, b, and c be the sides of a triangle, and A its area. Prove that the excircle at side a has radius $2 A /(-a+b+c)$.

Questions to be answered in writing

1. Use Ceva's theorem to prove that the orthocenter exists.
2. Prove Napoleon's theorem: Given an arbitrary triangle $A B C_{\triangle}$, the centers of the equilateral triangles exterior to $A B C_{\triangle}$ form an equilateral triangle. (Illustration and hints on next page.)

Hints: Represent the points $A, B, C, A_{1}, B_{1}, C_{1}$ with complex numbers $a, b, c, a_{1}, b_{1}, c_{1}$. Observe that multiplying with

$$
\rho:=\frac{1}{\sqrt{3}}\left(\cos \left(30^{\circ}\right)+i \cdot \sin \left(30^{\circ}\right)\right)
$$

rotates the vector $\overrightarrow{B A}=a-b$ into $\overrightarrow{B C_{1}}=c_{1}-b$. Use this observation to express c_{1} in terms of a, b and ρ. Express then a_{1} and c_{1} similarly in terms of a, b, c and ρ. Show that $c_{1}-a_{1}$ is obtained by multiplying $b_{1}-a_{1}$ with

$$
\frac{\rho}{1-\rho}=\frac{2 \rho-1}{\rho}=\frac{\rho-1}{2 \rho-1} .
$$

It is probably easier to do so if you find the quadratic equation whose roots are ρ and its conjugate. Finally show that

$$
\frac{\rho}{1-\rho}=\cos \left(60^{\circ}\right)+i \cdot \sin \left(60^{\circ}\right)
$$

meaning that $\overrightarrow{A_{1} C_{1}}$ is obtained from $\overrightarrow{A_{1} B_{1}}$ by a 60° rotation.

