Inclusion-exclusion formulas

Let A_{1}, A_{2}, \ldots, and A_{n} be subsets of the same finite set X. The inclusion-exclusion formulas allow us to count the elements in the union $\bigcup_{i=1}^{n} A_{i}$ and in its complement.

Theorem 1 We have

$$
\begin{gathered}
\left|X \backslash \bigcup_{i=1}^{n} A_{i}\right|=|X|-\sum_{i=1}^{n}\left|A_{i}\right|+\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|-\cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots A_{n}\right|, \quad \text { that is, } \\
\left|X \backslash \bigcup_{i=1}^{n} A_{i}\right|=\sum_{r=0}^{n}(-1)^{r} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots A_{i_{r}}\right| .
\end{gathered}
$$

Proof: Let x be any element of X. Assume x belongs to exactly j sets from $A_{1}, \ldots A_{n}$. (Here j is any integer between 0 and n.) Without loss of generality we may assume that x belongs to A_{1}, A_{2}, \ldots, A_{j}, but does not belong to $A_{j+1}, A_{j+2}, \ldots, A_{n}$. This element is counted zero times on the left hand side if $j>0$, and it is counted once if $j=0$. It suffices to show that x is counted the same number of times on the right hand side. Clearly x belongs to the intersection $A_{i_{1}} \cap A_{i_{2}} \cap \cdots A_{i_{r}}$ if and only if the index set $\left\{i_{1}, \ldots, i_{r}\right\}$ is a subset of $\{1,2, \ldots, j\}$, and there are $\binom{j}{r}$ such subsets. Thus x is counted with multiplicity $\sum_{r=0}^{j}(-1)^{r}\binom{j}{r}$ on the right hand side. By the binomial theorem, we have

$$
\sum_{r=0}^{j}(-1)^{r}\binom{j}{r}=(1-1)^{j}=\delta_{0, j}
$$

where $\delta_{0, j}$ is the Kronecker delta. Therefore x is counted the same number of times on both sides. \diamond

Subtracting both sides of the equation stated in the Theorem above from $|X|$, we obtain an important variant of the inclusion-exclusion formula:

$$
\begin{gathered}
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\cdots+(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \cdots A_{n}\right|, \quad \text { that is, } \\
\left|\bigcup_{i=1}^{n} A_{i}\right| \\
=\sum_{r=1}^{n}(-1)^{r-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq r}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots A_{i_{r}}\right| .
\end{gathered}
$$

