Fibonacci-type sequences

Gábor Hetyei

A Fibonacci-type sequence a_{0}, a_{1}, \ldots is given by the recursion formula $a_{n+2}+b a_{n+1}+c a_{n}=0$ and by the initial values for a_{0} and a_{1}. For example, for the Fibonacci numbers: $b=c=-1$ and $a_{0}=a_{1}=1$. Introducing $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ we get

$$
\begin{aligned}
\left(1+b x+c x^{2}\right) F(x) & =\left(1+b x+c x^{2}\right) \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}+b \sum_{n=0}^{\infty} a_{n} x^{n+1}+c \sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& =\sum_{n=2}^{\infty} \underbrace{\left(a_{n}+b a_{n-1}+c a_{n-2}\right)}_{0} x^{n}+\left(a_{0}+a_{1} x\right)+b a_{0} x=a_{0}+\left(a_{1}+b a_{0}\right) x,
\end{aligned}
$$

and so

$$
\begin{equation*}
F(x)=\frac{a_{0}+\left(a_{1}+b a_{0}\right) x}{1+b x+c x^{2}} . \tag{1}
\end{equation*}
$$

For example, for the Fibonacci numbers, we obtain the generating function $\frac{1}{1-x-x^{2}}$. If possible, we want to rewrite $1+b x+c x^{2}$ as $\left(1-r_{1} x\right)\left(1-r_{2} x\right)$. This is possible if the characteristic equation

$$
x^{2}+b x+c=0
$$

has two distinct nonzero roots. (Note: if any of the roots is 0 then $c=0$, so $1+b x+c x^{2}=1+b x$, and we are already in good shape). The reason for this quest is that one can always solve

$$
\begin{equation*}
\frac{1}{\left(1-r_{1} x\right)\left(1-r_{2} x\right)}=\frac{A_{1}}{1-r_{1} x}+\frac{A_{2}}{1-r_{2} x} . \tag{2}
\end{equation*}
$$

and thus rewrite $F(x)$ into a simpler form. In fact, (2) is equivalent to

$$
1=A_{1}\left(1-r_{2} x\right)+A_{2}\left(1-r_{1}\right) x=A_{1}+A_{2}-\left(A_{1} r_{2}+A_{2} r_{1}\right) x
$$

So we need to solve the system

$$
\begin{aligned}
A_{1}+A_{2} & =1 \\
A_{1} r_{2}+A_{2} r_{1} & =0
\end{aligned}
$$

for the unknowns A_{1} and A_{2}. Form the first equation we may express A_{2} as $A_{2}=1-A_{1}$, and so in the second equation we get $A_{1} r_{2}+\left(1-A_{1}\right) r_{1}=0$, that is $A_{1}\left(r_{2}-r_{1}\right)=-r_{1}$. From here

$$
\begin{equation*}
A_{1}=\frac{-r_{1}}{r_{2}-r_{1}} \quad \text { and } \quad A_{2}=\frac{r_{2}}{r_{2}-r_{1}} \tag{3}
\end{equation*}
$$

Once we have rewritten our generating function using (2) we may use the formula:

$$
\frac{1}{(1-r x)}=\sum_{n=0}^{\infty} r^{n} x^{n}
$$

Note that

$$
\frac{x}{(1-r x)}=\sum_{n=0}^{\infty} r^{n} x^{n+1}=\sum_{n=1}^{\infty} r^{n-1} x^{n}
$$

The only situation when this method does not work is when the characteristic equation $x^{2}+b x+c=0$ has a double root r. In that case we will need to use

$$
\begin{aligned}
\frac{1}{(1-r x)^{2}}=(1-r x)^{-2} & =\sum_{n=0}^{\infty}\binom{-2}{n}(-1)^{n} r^{n} x^{n}=\sum_{n=0}^{\infty}\left(\binom{n}{2}\right) r^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\binom{n+2-1}{n} r^{n} x^{n}=\sum_{n=0}^{\infty}(n+1) r^{n} x^{n}
\end{aligned}
$$

For the Fibonacci numbers themselves, the characteristic equation is $x^{2}-x-1=0$ which has two distinct roots $r_{1}=\frac{1+\sqrt{5}}{2}$ and $r_{2}=\frac{1-\sqrt{5}}{2}$. Note also that $r_{2}-r_{1}=-\sqrt{5}$, so (2) and (3) yields

$$
\begin{aligned}
F(x) & =\frac{1}{1-x-x^{2}}=\frac{1+\sqrt{5}}{2 \sqrt{5}} \frac{1}{1-\frac{1+\sqrt{5}}{2} x}+\frac{\sqrt{5}-1}{2 \sqrt{5}} \frac{1}{1-\frac{1-\sqrt{5}}{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} x^{n}-\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1} x^{n}
\end{aligned}
$$

Therefore

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)
$$

An example for the double root situation would be $a_{n+2}-6 a_{n+1}+9 a_{n}=0$ where the characteristic equation is $x^{2}-6 x+9=0$, with double root $r=3$. Assuming $a_{0}=0$ and $a_{1}=1$, from (1) we get

$$
F(x)=\frac{x}{1-6 x+9 x^{2}}=\frac{x}{(1-3 x)^{2}}=\sum_{n=0}^{\infty}(n+1) 3^{n} x^{n+1}=\sum_{n=1}^{\infty} n 3^{n-1} x^{n}
$$

and so $a_{n}=n 3^{n-1}$ for $n \geq 1$.

