Ceva’s theorem

Let ABC be any triangle and choose a point A;, By, C7 on the line segments BC, AC, AB,
respectively.
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Theorem 1 (Ceva) The lines AAy, BBy, and CCy are concurrent if and only if

AC\ BAi CBi _,
CiB A,C BlA

Proof: Assume first the three lines meet in the point P and use the notation shown in the picture
below:
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The triangles AC7Pa and C1BPa have a common altitude at P, so the proportion of their areas is
the proportion of the corresponding bases. Thus we may write

ACy  PA-PCy-sin(y)/2  PA-sin(y)

ClB - PB- PCl . sin(ﬂl)/2 B PB - sin(ﬂl)'

Similarly we have
BA;  PB-sin(a) CB, PC -sin(f)
_ an _

A1C PC -sin(y) B1A  PA-sin(ag)’
Multiplying the three fractions we get 1. For the converse, assume that A;, By and C] satisfy

AC, BA, CB
1B AC BA

=1.

We may rewrite this as
ACy  AC BiA

CiB ~ BA, CB;
Define P* as the intersection of AA; and BBy and let C* be the intersection of CP* with AB:
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By the already shown implication of Ceva’s theorem we have

AC* BA OB _
C*B AC BiA

and so
AC*  A1C BA

C*B ~ BA, CB;
We obtained that C* = (' since they both subdivide AB into two segments of the same proportions.
Therefore C'C also passes through P*. <

The following equivalent form of Ceva’s theorem is often useful.

Theorem 2 (Ceva) Using the notation of the picture below

the lines AA1, BB1, and CC1 are concurrent if and only if

sin(ay) sin(f1) sin(y1) = sin(a — aq) sin(8 — B1) sin(y — 71).

Proof: The triangles AC1Ca and C1BCa have a common altitude at C, so the proportion of their
areas is the proportion of the corresponding bases. Thus we may write

ACy  AC-CCp-sin(m1)/2  AC -sin(m)

Ci1B  BC-CC-sin(y—7)/2 BC-sin(y—m)

Similarly we have
BAy  AB-sin(o) and CBy  BC-sin(f1)

AC AC -sin(a — aq) B1A  AB-sin(B— 1)
Multiplying the three equations we get that Ceva’s condition is equivalent to
AC -sin(v1)  AB-sin(an)  BC-sin(B)

BC -sin(y —v1) AC-sin(a—a«a1) AB -sin(f — ()

Multiplying both sides with sin(a — a1) sin(8 — 1) sin(y — 1) yields the statement. <&

=1.



