The Möbius function of a partially ordered set

1 Partially ordered sets

A partially ordered set (poset) P is a set with a relation \leq that is

- Reflexive: $x \leq x$ holds for all $x \in P$;
- Antisymmetric: if $x \leq y$ and $y \leq x$ then $x=y$;
- Transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$.

Examples of partially ordered sets include: the subsets of a set, ordered by inclusion, the real numbers, ordered by the usual \leq relation, and the positive integers, ordered by the relation "divides".

2 Locally finite posets

An interval $[x, y]$ in a poset is the set of all elements z satisfying $x \leq z \leq y$. A partially ordered set is locally finite if each of its intervals has only finitely many elements.

Let $f: P \rightarrow \mathbb{R}$ be a function. The lower sum $S_{\leq f}$ and upper sum $S_{\geq} f$ are given by

$$
\left(S_{\leq} f\right)(x)=\sum_{y \leq x} f(y) \quad \text { and } \quad\left(S_{\geq} f\right)(x)=\sum_{y \geq x} f(y)
$$

The Möbius function μ of a locally finite poset assigns a number to each interval $[x, y] \subseteq P$ according to the following rules:

- $\mu(x, x)=1$ holds for all $x \in P$
- For all $x<y$ we have $\sum_{x \leq z \leq y} \mu(x, z)=0$.

This function is used in the famous Möbius inversion formula:

Theorem 2.1 Let P be a locally finite poset, and f and g functions from P to \mathbb{R}. Then $g(x)=S_{\leq f} f(x)$ if and only if $f(x)=\sum_{y \leq x} g(y) \mu(y, x)$ and $g(x)=S_{\geq} f(x)$ if and only if $f(x)=\sum_{y \geq x} g(y) \mu(x, y)$.

3 Examples

1. If P is the set of all finites subsets of the set $\{1,2,3, \ldots\}$, ordered by inclusion, then the Möbius function is $\mu(X, Y)=(-1)^{|Y|-|X|}$. The Möbius inversion formula implies

$$
g(X)=\sum_{Y \subseteq X} f(Y) \quad \text { iff } \quad f(X)=\sum_{Y \subseteq X} g(Y)(-1)^{|X|-|Y|}
$$

and, for all subsets of $\{1,2, \ldots, n\}$,

$$
g(X)=\sum_{\{1, \ldots, n\} \supseteq Y \supseteq X} f(Y) \quad \text { iff } \quad f(X)=\sum_{\{1, \ldots, n\} \supseteq Y \supseteq X} g(Y)(-1)^{|Y|-|X|}
$$

Assume $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of $\{1,2, \ldots, N\}$. For any $Y \subseteq\{1,2, \ldots, n\}$ let $f(Y)$ be the number of elements of $\bigcup_{y \in Y} A_{y} \cap \bigcap_{x \notin Y} \overline{A_{x}}$. (This is the number of elements belonging to all A_{y} for $y \in Y$ and no other A_{x}.) Let $g(X)$ be the number of elements in $\bigcap_{x \in X} A_{x}$. Then $g(X)$ is clearly equal to $\sum_{Y \supseteq X} f(Y)$. The second Möbius inversion formula gives the following inclusion-exclusion formula:

$$
\left|\bigcap_{x \in X} A_{x} \cap \bigcap_{x \notin X} \bar{A}_{x}\right|=\sum_{Y \supseteq X}(-1)^{|Y|-|X|}\left|\bigcap_{y \in Y} A_{y}\right| .
$$

Applying this equation to $X=\emptyset$ gives the usual inclusion-exclusion formula.
2. If $P=\mathbb{N}$, ordered by the usual \leq relation, then

$$
\mu(m, n)= \begin{cases}1 & \text { if } m=n \\ -1 & \text { if } m+1=n \\ 0 & \text { in all other cases }\end{cases}
$$

The Möbius inversion formula implies

$$
g(n)=\sum_{k \leq n} f(k) \quad \text { iff } \quad f(n)=g(n)-g(n-1)
$$

3. If $P=\mathbb{P}$, ordered by the relation "divides", then the Möbius function is given by

$$
\mu(m, n)=\bar{\mu}(n / m)
$$

where $\bar{\mu}$ is the Möbius function known from number theory:

$$
\bar{\mu}(n)= \begin{cases}0 & \text { if some } m^{2}>1 \text { divides } n \\ (-1)^{r} & \text { if } n \text { is square-free and the product of } r \text { primes }\end{cases}
$$

The Möbius inversion formula implies

$$
g(n)=\sum_{k \mid n} f(k) \quad \text { iff } \quad f(n)=\sum_{k \mid n} g(k) \bar{\mu}(n / k)
$$

This is the Möbius inversion formula known in number theory.

4 Proof of the Möbius inversion formula

We show that $g(x)=S_{\leq f}(x)$ if and only if $f(x)=\sum_{y \leq x} g(y) \mu(y, x)$, the proof of the other statement is similar. The statement makes sense only if we assume that for any x only finitely many y 's satisfy $y \leq x$. Let us fix an element x_{0} and consider only elements that are less than or equal to x_{0}. We may assume this is our entire poset P. Let us associate to P a square matrix Z whose rows and columns are indexed with the elements of P, and which has a 1 in row x, column y exactly when $x \leq y$, and has a zero in all other rows. Multiplying the row vector $f:=(f(y) \mid y \in P)$ with the matrix Z from the right yields a row vector whose entry associated to x is $\sum_{y \leq x} f(y)$. Let us introduce $\underline{g}:=(g(x) \mid x \in P)$, and the matrix M whose entry in row x and column y is $\mu(x, y)$ if $x \leq y$ and zero otherwise. The first statement in Theorem 2.1 is equivalent to saying

$$
\underline{g}=\underline{f} * Z \quad \text { if and only if } \quad \underline{f}=\underline{g} * M
$$

This is obviously true if the matrices M and Z are inverses of each other, so it suffices to show

$$
I=M * Z
$$

To verify this we need to check that the product of a row indexed by x in M and a row indexed by y in Z is $\delta_{x, y}$, the Kronecker delta function. In other words we need to check

$$
\sum_{x \leq z \leq y} \mu(x, z)=\delta_{x, y}
$$

which is exactly the definition of the Möbius function.

