
Elementary product expansion of the determinant

1 Permutations and inversions

A permutation of the set {1, 2, . . . , n} is a bijection π : {1, 2, . . . , n} → {1, 2, . . . , n}. The number n is
the order of the permutation. To write permutations we use sometimes the two-row notation, other
times the cycle decomposition. For example, for n = 4, the permutation π given by π(1) = 1, π(2) = 3,
π(3) = 4, π(4) = 2 may be written as

π =
(

1 2 3 4
1 3 4 2

)
in the two-row notation, and π = (1)(234) or π = (234) is the cycle decomposition of π. (Cycles of
length 1, also known as fixed points may be omitted when we write the cycle decomposition.) There
are n! permutations of order n, they form a group, the symmetric group Sn of order n.

An inversion of a permutation π is a pair (i, j) such that i < j and π(i) > π(j). A permutation is
even if it has an even number of inversions, otherwise it is odd. Even permutations of order n form a
normal subgroup of Sn, the alternating group An.

Permutations of order n are in bijection with maximal rook placements on an n× n chess-board,
as follows. We may associate to π ∈ Sn the rook placement which places a rook in row i and column
π(i) for each i. Thus we place exactly one rook in each row and each column. Inversions correspond
then to the pairs of rooks in the placement of π which are in “anti-diagonal” position.

A cycle of odd length is an even permutation, a cycle of even length is an odd permutation. Thus
a permutation is even, if and only if the number of even cycles in its cycle decomposition is odd.

2 The elementary product expansion

Given an n× n matrix A = (ai,j), and elementary product of A is a product a1,π(1) · a2,π(2) · · · an,π(n),
where π is any permutation of order n. In other words, we select exactly one entry in each row and
each column of A and we multiply them. Our main result is the following
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Theorem 1 The determinant det(A) of an n× n matrix A is given by

det(A) =
∑
π∈Sn

(−1)inv(π) · a1,π(1) · a2,π(2) · · · an,π(n).

Here inv(π) is the number of inversions of the permutation π.

Proof: We proceed by induction on n, assuming the definition given in [1]. For n = 1 the statement
is obvious, det(A) equals the only entry in it, either way. Assume the statement is true for all
(n− 1)× (n− 1) matrices, and consider an n× n matrix A. By definition,

det(A) =
n∑

j=1

(−1)1+ja1,j · det(Ã1,j) (1)

where Ã1,j is the matrix obtained by removing the first row and the j-th column from A. By our
induction hypothesis, det(Ã1,j) may be obtained by summing over all elementary products of Ã1,j and
multiplying each elementary product by (−1) raised to the number of anti-diagonal pairs in the rook
placement associated to the elementary product. Each elementary product of A contains exactly one
entry a1,j in the first row, and the remaining terms form an elementary product of Ã1,j . Conversely
each elementary product of Ã1,j , multiplied by a1,j yields an elementary product of A. Thus, replacing
each det(Ã1,j) with its elementary product expansion in (1) gives a sum in which each elementary
product of A appears exactly once, with coefficient 1 or −1. We only need to check that this coefficient
is 1 exactly when the underlying permutation even.

When we decompose an elementary product of A as a1,j times an elementary product of Ã1,j , we
may distinguish between two types of anti-diagonal pairs in the underlying rook placement: those
involving a1,j , and those forming an anti-diagonal pair in the underlying rook placement of the cor-
responding elementary product of Ã1,j . Thus the sign of the elementary product in det(A) may be
obtained by multiplying the sign of the corresponding elementary product of det(Ã1,j) with (−1)
raised to the number of anti-diagonal pairs involving a1,j . This number is (−1)j−1 since a1,j forms an
anti-diagonal pair with the terms in the first j − 1 columns, and only with these. There are exactly
(j − 1) entries selected in the first (j − 1) columns. Note finally that (−1)j−1 = (−1)j+1. 3

3 Consequences of the elementary product expansion

Corollary 1 For a 3× 3 matrix A we have

det(A) = a1,1a2,2a3,3 − a1,1a2,3a3,2 − a2,1a1,2a3,3 − a1,3a2,2a3,1 + a1,2a2,3a3,1 + a1,3a2,1a3,2.
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In fact, S3 has 6 elements, of which the identity, (123) and (132) are even permutations, and the
transpositions (12), (23) and (31) are odd permutations.

Proposition 1 Let A be a square matrix, and let B be the matrix obtained from A by exchanging two
adjacent rows in A. Then det(B) = −det(A).

Proof: Assume B is obtained from A by exchanging the i-th and (i + 1)-st rows. Compare the
elementary row expansions of det(A) and det(B). The same terms appear in both, and the inversions
are almost the same. The only difference between A and B is that, for the same elementary product,
the entry selected in the i-th row of A is in inversion with the entry selected in the (i + 1)-st row if
and only if the same two entries are not in inversion in B. 3

Corollary 2

det(A) =
n∑

j=1

(−1)i+jai,j · det(Ãi,j).

In fact, using the previous proposition we may transform the cofactor expansion by the first row into
the cofactor expansion by any row. It takes (i−1) exchanges of adjacent rows to arrive at the cofactor
expansion by the i-th row.

Proposition 2 For any square matrix A we have det(A) = det(AT ).

Proof: Reflecting a maximal rook placement about the main diagonal transforms the underlying
permutation into its inverse, and leaves the number of inversions unchanged. Thus we get

det(AT ) =
∑
π∈Sn

(−1)inv(π) · a1,π−1(1) · a2,π−1(2) · · · an,π−1(n)

=
∑
π∈Sn

(−1)inv(π−1) · a1,π−1(1) · a2,π−1(2) · · · an,π−1(n) = det(A).
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