Elementary product expansion of the determinant

1 Permutations and inversions

A permutation of the set $\{1,2, \ldots, n\}$ is a bijection $\pi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$. The number n is the order of the permutation. To write permutations we use sometimes the two-row notation, other times the cycle decomposition. For example, for $n=4$, the permutation π given by $\pi(1)=1, \pi(2)=3$, $\pi(3)=4, \pi(4)=2$ may be written as

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

in the two-row notation, and $\pi=(1)(234)$ or $\pi=(234)$ is the cycle decomposition of π. (Cycles of length 1, also known as fixed points may be omitted when we write the cycle decomposition.) There are n ! permutations of order n, they form a group, the symmetric group S_{n} of order n.

An inversion of a permutation π is a pair (i, j) such that $i<j$ and $\pi(i)>\pi(j)$. A permutation is even if it has an even number of inversions, otherwise it is odd. Even permutations of order n form a normal subgroup of S_{n}, the alternating group A_{n}.

Permutations of order n are in bijection with maximal rook placements on an $n \times n$ chess-board, as follows. We may associate to $\pi \in S_{n}$ the rook placement which places a rook in row i and column $\pi(i)$ for each i. Thus we place exactly one rook in each row and each column. Inversions correspond then to the pairs of rooks in the placement of π which are in "anti-diagonal" position.

A cycle of odd length is an even permutation, a cycle of even length is an odd permutation. Thus a permutation is even, if and only if the number of even cycles in its cycle decomposition is odd.

2 The elementary product expansion

Given an $n \times n$ matrix $A=\left(a_{i, j}\right)$, and elementary product of A is a product $a_{1, \pi(1)} \cdot a_{2, \pi(2)} \cdots a_{n, \pi(n)}$, where π is any permutation of order n. In other words, we select exactly one entry in each row and each column of A and we multiply them. Our main result is the following

Theorem 1 The determinant $\operatorname{det}(A)$ of an $n \times n$ matrix A is given by

$$
\operatorname{det}(A)=\sum_{\pi \in S_{n}}(-1)^{\operatorname{inv}(\pi)} \cdot a_{1, \pi(1)} \cdot a_{2, \pi(2)} \cdots a_{n, \pi(n)}
$$

Here $\operatorname{inv}(\pi)$ is the number of inversions of the permutation π.

Proof: We proceed by induction on n, assuming the definition given in [1]. For $n=1$ the statement is obvious, $\operatorname{det}(A)$ equals the only entry in it, either way. Assume the statement is true for all $(n-1) \times(n-1)$ matrices, and consider an $n \times n$ matrix A. By definition,

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} a_{1, j} \cdot \operatorname{det}\left(\widetilde{A}_{1, j}\right) \tag{1}
\end{equation*}
$$

where $\widetilde{A}_{1, j}$ is the matrix obtained by removing the first row and the j-th column from A. By our induction hypothesis, $\operatorname{det}\left(\widetilde{A}_{1, j}\right)$ may be obtained by summing over all elementary products of $\widetilde{A}_{1, j}$ and multiplying each elementary product by (-1) raised to the number of anti-diagonal pairs in the rook placement associated to the elementary product. Each elementary product of A contains exactly one entry $a_{1, j}$ in the first row, and the remaining terms form an elementary product of $\widetilde{A}_{1, j}$. Conversely each elementary product of $\widetilde{A}_{1, j}$, multiplied by $a_{1, j}$ yields an elementary product of A. Thus, replacing each $\operatorname{det}\left(\widetilde{A}_{1, j}\right)$ with its elementary product expansion in (1) gives a sum in which each elementary product of A appears exactly once, with coefficient 1 or -1 . We only need to check that this coefficient is 1 exactly when the underlying permutation even.

When we decompose an elementary product of A as $a_{1, j}$ times an elementary product of $\widetilde{A}_{1, j}$, we may distinguish between two types of anti-diagonal pairs in the underlying rook placement: those involving $a_{1, j}$, and those forming an anti-diagonal pair in the underlying rook placement of the corresponding elementary product of $\widetilde{A}_{1, j}$. Thus the sign of the elementary product in $\operatorname{det}(A)$ may be obtained by multiplying the sign of the corresponding elementary product of $\operatorname{det}\left(\widetilde{A}_{1, j}\right)$ with (-1) raised to the number of anti-diagonal pairs involving $a_{1, j}$. This number is $(-1)^{j-1}$ since $a_{1, j}$ forms an anti-diagonal pair with the terms in the first $j-1$ columns, and only with these. There are exactly $(j-1)$ entries selected in the first $(j-1)$ columns. Note finally that $(-1)^{j-1}=(-1)^{j+1}$.

3 Consequences of the elementary product expansion

Corollary 1 For a 3×3 matrix A we have

$$
\operatorname{det}(A)=a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2}-a_{2,1} a_{1,2} a_{3,3}-a_{1,3} a_{2,2} a_{3,1}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}
$$

In fact, S_{3} has 6 elements, of which the identity, (123) and (132) are even permutations, and the transpositions (12), (23) and (31) are odd permutations.

Proposition 1 Let A be a square matrix, and let B be the matrix obtained from A by exchanging two adjacent rows in A. Then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Proof: Assume B is obtained from A by exchanging the i-th and ($i+1$)-st rows. Compare the elementary row expansions of $\operatorname{det}(A)$ and $\operatorname{det}(B)$. The same terms appear in both, and the inversions are almost the same. The only difference between A and B is that, for the same elementary product, the entry selected in the i-th row of A is in inversion with the entry selected in the $(i+1)$-st row if and only if the same two entries are not in inversion in B.

Corollary 2

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i, j} \cdot \operatorname{det}\left(\widetilde{A}_{i, j}\right) .
$$

In fact, using the previous proposition we may transform the cofactor expansion by the first row into the cofactor expansion by any row. It takes $(i-1)$ exchanges of adjacent rows to arrive at the cofactor expansion by the i-th row.

Proposition 2 For any square matrix A we have $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.

Proof: Reflecting a maximal rook placement about the main diagonal transforms the underlying permutation into its inverse, and leaves the number of inversions unchanged. Thus we get

$$
\begin{aligned}
\operatorname{det}\left(A^{T}\right) & =\sum_{\pi \in S_{n}}(-1)^{\operatorname{inv}(\pi)} \cdot a_{1, \pi^{-1}(1)} \cdot a_{2, \pi^{-1}(2)} \cdots a_{n, \pi^{-1}(n)} \\
& =\sum_{\pi \in S_{n}}(-1)^{\operatorname{inv}\left(\pi^{-1}\right)} \cdot a_{1, \pi^{-1}(1)} \cdot a_{2, \pi^{-1}(2)} \cdots a_{n, \pi^{-1}(n)}=\operatorname{det}(A) .
\end{aligned}
$$

References

[1] Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence, "Linear Algebra, 4th Edition," Prentice Hall, 2003.

