The Mobius function of a partially ordered set

1 Partially ordered sets

A partially ordered set (poset) P is a set with a relation < that is

o Reflexive: x < x holds for all z € P;
o Antisymmetric: if x <y and y < x then z = y;
o Transitive: if x <y and y < z then x < z.

Examples of partially ordered sets include: the subsets of a set, ordered by inclusion, the real
numbers, ordered by the usual < relation, and the natural numbers, ordered by the relation “divides”.

2 Locally finite posets
An interval [z, y] in a poset is the set of all elements z satisfying z < z < y. A partially ordered set is
locally finite if each of its intervals has only finitely many elements.

Let f: P — R be a function. The lower sum S<f and upper sum S> f are given by

(S<f)@)=>_ fly) and (S=f)(z) =D f(y)

y<z y>x

The Mébius function p of a locally finite poset assigns a number to each interval [z, y] C P according
to the following rules:

o (z,x) =0 holds for all z € P

e Forall z <y we have >, ., pu(z,2) =0.
This function is used in the famous Mobius inversion formula:

Theorem 2.1 Let P be a locally finite poset, and f and g functions from P toR. Then g(x) = S< f(x)
if and only if f(x) =3, <, 9(W)u(y, ) and g(x) = S> f(z) if and only if f(x) =32 >, 9(W)u(z,y).



3 Examples

1. If P is the set of all finites subsets of the set {1,2,3, ...}, ordered by inclusion, then the M&bius
function is p(X,Y) = (—=1)YI=IXI. The Mébius inversion formula implies

= S0 ) = Y g1

YCX YCX

and, for all subsets of {1,2,...,n},

dX)= Y ) it fx)= Y gL

{L,...n}2Y2X {L,...n}2YDX

Assume Aq, Ag, ..., A, are subsets of {1,2,...,N}. For any Y C {1,2,... ,n} let f(Y) be the
number of elements of |J,cy Ay N (\,gy A,. (This is the number of elements belonging to all
Ay, for y € Y and no other A,.) Let g(X) be the number of elements in (,.x A;. Then
g(X) is clearly equal to >y~ f(Y). The second Mobius inversion formula gives the following
inclusion-exclusion formula:

ﬂ AN m A, = Z(_l)lYl—\Xl ﬂ A,
zeX g X YOX yey
Applying this equation to X = () gives the usual inclusion-exclusion formula.
2. If P =N, ordered by the usual < relation, then
1 if m =n;
pm,n)=¢ =1 ifm+1=n;
0  in all other cases.

The Mobius inversion formula implies

=Y f(k) iff f(n) =g(n) —g(n—1).

k<n
3. If P =N, ordered by the relation “divides”, then the Mobius function is given by
u(m, n) = i(n/m)
where @ is the Mo6bius function known from number theory:

7i(n) 0 if some m? > 1 divides n,
) = (=1)" if n is square-free and the product of r primes.

The Mobius inversion formula implies

=Y fk) iff f(n) =) g(k)u(n/k).

This is the M6bius inversion formula known in number theory.



4 Proof of the Mobius inversion formula

We show that g(z) = S<f(z) if and only if f(z) = 3, -, 9(y)u(y, z), the proof of the other statement
is similar. The statement makes sense only if we assume that for any = only finitely many y’s satisfy
y < x. Let us fix an element xg and consider only elements that are less than or equal to xg. We may
assume this is our entire poset P. Let us associate to P a square matrix Z whose rows and columns are
indexed with the elements of P, and which has a 1 in row x, column y exactly when z < y, and has a
zero in all other rows. Multiplying the row vector f := (f(y) |y € P) with the matrix Z from the right
yields a row vector whose entry associated to x i§2y<x f(y). Let us introduce g := (g(z) |z € P),
and the matrix M whose entry in row x and column y is p(z,y) if # < y and zero otherwise. The first
statement in Theorem 2.1 is equivalent to saying
g=fxZ ifandonlyif f=g=x M.

This is obviously true if the matrices M and Z are inverses of each other, so it suffices to show
I=MxZ

To verify this we need to check that the product of a row indexed by x in M and a row indexed by ¥
in Z is 0, 4, the Kronecker delta function. In other words we need to check

Y nl,2) = bay

z<z<y

which is exactly the definition of the Mobius function.



