Assignment 9

We consider the Newton sums $S_m(n) = 1^m + 2^m + \ldots + n^m$, and their generating function

$$F_m(t) = \sum_{n \ge 0} S_m(n) \cdot t^n.$$

1. Explain why $G_m(t) = \sum_{n\geq 0} n^m t^n$ is given by $G_m(t) = (1-t)F_m(t)$, and prove the recursion formula

$$G_{m+1}(t) = t \cdot \frac{d}{dt} G_m(t).$$

2. Prove that the generating functions $F_m(t)$ satisfy the recursion formula

$$F_{m+1}(t) = \frac{t}{1-t} \cdot \frac{d}{dt} \left((1-t) \cdot F_m(t) \right).$$

Use this and $F_0(t) = 1/(1-t)^2$ to calculate $F_4(t)$.

3. Using the result of the previous exercise, prove that the generating functions $F_m(t)$ are of the form

$$F_m(t) = \frac{t \cdot p_m(t)}{(1-t)^{m+2}},$$

where the polynomials $p_m(t)$ are given by $p_0(t) = 1$ and the recursion formula

$$p_{m+1}(t) = (p_m(t) + t \cdot p'_m(t)) \cdot (1 - t) + (m + 1) \cdot t \cdot p_m(t).$$

$$\begin{array}{c|cccc} m & p_m(t) \\ \hline 0 & 1 \\ 1 & 1 \\ 2 & 1+t \\ 3 & 1+4t+t^2 \\ 4 & 1+11t+11t^2+t^3 \\ 5 & 1+26t+66t^2+26t^3+t^4 \end{array}$$

- 4. Introduce $a_{m,k}$ for the coefficients of $p_m(t)$, i.e., assume $p_m(t) = \sum_{k=0}^{m-1} a_{m,k} t^k$. Using the result of the previous exercise, find a recursion formula for the numbers $a_{m,k}$.
- 5. Using the formulas $F_m(t) = \frac{t \cdot p_m(t)}{(1-t)^{m+2}}$ and $p_m(t) = \sum_{k=0}^{m-1} a_{m,k} t^k$, express the Newton sums $S_m(n)$ in terms of the numbers $a_{m,k}$. Use the formula

$$\frac{1}{(1-t)^n} = \sum_{k=0}^{\infty} \binom{n+k-1}{k} t^k.$$