Assignment 9

We consider the Newton sums $S_{m}(n)=1^{m}+2^{m}+\ldots+n^{m}$, and their generating function

$$
F_{m}(t)=\sum_{n \geq 0} S_{m}(n) \cdot t^{n}
$$

1. Explain why $G_{m}(t)=\sum_{n \geq 0} n^{m} t^{n}$ is given by $G_{m}(t)=(1-t) F_{m}(t)$, and prove the recursion formula

$$
G_{m+1}(t)=t \cdot \frac{d}{d t} G_{m}(t)
$$

2. Prove that the generating functions $F_{m}(t)$ satisfy the recursion formula

$$
F_{m+1}(t)=\frac{t}{1-t} \cdot \frac{d}{d t}\left((1-t) \cdot F_{m}(t)\right) .
$$

Use this and $F_{0}(t)=1 /(1-t)^{2}$ to calculate $F_{4}(t)$.
3. Using the result of the previous exercise, prove that the generating functions $F_{m}(t)$ are of the form

$$
F_{m}(t)=\frac{t \cdot p_{m}(t)}{(1-t)^{m+2}}
$$

where the polynomials $p_{m}(t)$ are given by $p_{0}(t)=1$ and the recursion formula

$$
p_{m+1}(t)=\left(p_{m}(t)+t \cdot p_{m}^{\prime}(t)\right) \cdot(1-t)+(m+1) \cdot t \cdot p_{m}(t)
$$

m	$p_{m}(t)$
0	1
1	1
2	$1+t$
3	$1+4 t+t^{2}$
4	$1+11 t+11 t^{2}+t^{3}$
5	$1+26 t+66 t^{2}+26 t^{3}+t^{4}$

4. Introduce $a_{m, k}$ for the coefficients of $p_{m}(t)$, i.e., assume $p_{m}(t)=\sum_{k=0}^{m-1} a_{m, k} t^{k}$. Using the result of the previous exercise, find a recursion formula for the numbers $a_{m, k}$.
5. Using the formulas $F_{m}(t)=\frac{t \cdot p_{m}(t)}{(1-t)^{m+2}}$ and $p_{m}(t)=\sum_{k=0}^{m-1} a_{m, k} t^{k}$, express the Newton sums $S_{m}(n)$ in terms of the numbers $a_{m, k}$. Use the formula

$$
\frac{1}{(1-t)^{n}}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} t^{k}
$$

