Assignment 13

Oral questions

1. Find the antiderivative of $\cos ^{3}(x)$.
2. Find the antiderivative of $\frac{1}{\left(1+x^{2}\right)^{2}}$.
3. Find the antiderivative of $x^{2} \cdot \sin (x)$.
4. Find the antiderivative of $\frac{1}{x^{2}+4 x+7}$.
5. Exercise 31.2.
6. The Fibonacci numbers F_{0}, F_{1}, \ldots are given by $F_{0}=1, F_{1}=1$, and the recursion formula $F_{n}+F_{n+1}=$ F_{n+2}. Find a closed formula for the function whose Taylor series is $\sum_{n=0}^{\infty} F_{n} \cdot x^{n}$.

Question to be answered in writing

1. Find the Taylor series expansion of $\arcsin (x)$. (Hint: find the Taylor series of its derivative first, and then integrate term-by-term.)

Bonus question

1. A set S of real numbers has length zero if for all $\varepsilon>0$ there is a (finite) family of intervals such that S is contained in $\bigcup_{k=0}^{n} I_{k}$ and the total length of the intervals I_{k} is less than ε. Consider a bounded function f on $[a, b]$ and let S be the set of numbers where f is not continuous. Prove that f is integrable on $[a, b]$ if the length of S is zero.
