Assignment 13

Oral questions

- 1. Find the antiderivative of $\cos^3(x)$.
- 2. Find the antiderivative of $\frac{1}{(1+x^2)^2}$.
- 3. Find the antiderivative of $x^2 \cdot \sin(x)$.
- 4. Find the antiderivative of $\frac{1}{x^2 + 4x + 7}$.
- 5. Exercise 31.2.
- 6. The Fibonacci numbers F_0, F_1, \ldots are given by $F_0 = 1$, $F_1 = 1$, and the recursion formula $F_n + F_{n+1} = F_{n+2}$. Find a closed formula for the function whose Taylor series is $\sum_{n=0}^{\infty} F_n \cdot x^n$.

Question to be answered in writing

1. Find the Taylor series expansion of $\arcsin(x)$. (Hint: find the Taylor series of its derivative first, and then integrate term-by-term.)

Bonus question

1. A set S of real numbers has length zero if for all $\varepsilon > 0$ there is a (finite) family of intervals such that S is contained in $\bigcup_{k=0}^{n} I_k$ and the total length of the intervals I_k is less than ε . Consider a bounded function f on [a, b] and let S be the set of numbers where f is not continuous. Prove that f is integrable on [a, b] if the length of S is zero.